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SUMMARY 

 

In the pharmaceutical and specialty chemical industries, batch crystallization is 

used widely in the production of high-value added species. It is widely recognized that 

product properties, some of which may be related directly to the utility of the drug, and 

downstream processes, such as tableting, are influenced by crystal morphology, size, and 

shape. The ability to observe on-line the evolution of the population density and detect a 

polymorphic transformation would constitute a major asset in understanding crystallizer 

operation and the phenomena that influence product quality.  

Focused-beam reflectance measurement (FBRM) is among the process analytical 

technologies (PAT) that hold promise for enhanced monitoring of pharmaceutical 

crystallization. It is based on scattering of laser light and provides a methodology for on-

line monitoring of a representation of the crystal population in either batch or continuous 

crystallization systems. Properly installed, the FBRM allows on-line determination of the 

chord-length density, which is a complex function of crystal geometry and is statistically 

related to the population density. A model based on the geometry of the crystal was 

therefore established to relate both densities and thus enable computation of the 

population density from a measured chord length density. The evolution of the population 

density as a function of time leads to the estimation of the supersaturation and therefore 

allows the determination of the systems kinetics. From there, the population balance can 

be solved. 

Paracetamol is a common substance which exhibit polymorphism and is mainly 

used as an analgesic and antipyretic drug. The developed model was here applied to batch 
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cooling crystallization of paracetamol from ethanol solutions; this system was also used 

to explore the utility of FBRM data in detection of the polymorphic transformations. As 

different shapes generate different chord length densities, a transition from one 

polymorphic form with one specific crystal habit to another can be tracked through an 

efficient use of the FBRM.  

The purpose of the present study is to use the FBRM to monitor the evolution of 

the crystallization process, develop a predictive model describing the evolution of the 

process, and monitor polymorphic transformation. The end results would be the 

possibility to implement a better control of the crystallization process that would ensure 

that downstream processing and product quality meet expectations. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Batch crystallization is widely used in the chemical industry to produce high 

value added specialty compounds usually in small quantities or when the crystallization 

step is complex, for example high density systems or use of toxic chemicals. The most 

important industrial application lies in the pharmaceutical industry, as the majority of 

their production is constituted of solid compounds. The crystallization process defines the 

purity of the solid as well as its physical properties such as particle size and habit 

(Fachaux et al. 1995). Those two factors have a large impact on the physical properties 

and on the manufacturing processability of the final crystalline product (Table 1 - 

Shekunov & York 2000). Consequently, gaining in-depth knowledge of the phenomena 

of particle formation and crystallization is essential. Empirical methods have, thus far, 

provided a better understanding of those phenomena. Unfortunately, testing the purity 

and physical properties of the product via sampling and laboratory analysis, leads to an 

unfortunate waste of the precious material, as well as time and money. Therefore, an in-

depth knowledge of the process is fundamental in order to implement an efficient control 

of crystallization. 

 It is essential to note that the pharmaceutical industry is highly regulated so as to ensure 

the safety of the end product. Thus, the possibilities of manipulation of the already 

approved process are strongly limited. Research efforts must therefore be oriented 

towards the development of reliable new methods that are based on the physical form of 

the solid to take into account the presence of highly non-spherical particle shapes. These 
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methodologies should require limited to no sampling so as to limit waste, be able to 

detect any physical change occurring through the process and also meet regulatory 

requirements. The Process Analytical Technology (PAT) initiative was derived from this 

challenge as a joint effort between the Food and Drug Administration (FDA) and the 

pharmaceutical industries to design reliable on-line measurement technology 

(Vanderhallen et al., 2002; Wood-Kaczmar, 2002 and Yu et al., 2004). The goal is to 

offer accurate and repeatable methods, with short analytical time and high resolution, for 

a wide range of particle sizes and shapes that do not require any pretreatment, such as 

dilution of the system studied. The main motives for the adoption of such a technique by 

the industry are mainly dependent upon factors such as: speed, cost and automated 

analysis of the crystal population. The development of the Focused Bean Reflectance 

Measurement (FBRM) follows the PAT initiative and offers a real-time analysis of the 

evolution of the crystal population. 

 A new methodology to study and analyze the crystallization process, through the 

use of the FBRM, will be presented here. The batch cooling crystallization of 

paracetamol in ethanol solutions will be used as a model system. A methodology based 

on the FBRM measurements will thus be developed to determine the kinetics of the 

system and establish a predictive model to describe the system through the use of 

population balance. Polymorphic transition was also investigated as a complementary 

study as this phenomenon is a key issue in the pharmaceutical industry. 
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Table 1. Solid-state properties defined by crystallization process and their relationship with 
specific characteristics of drug substances and drug products 

 
Solid-state properties Effect on drug  

Structural 

Crystallinity (existence of amorphous and 

semi-crystalline forms) 

Polymorphs     

Solvates (hydrates)   

  

Salts     

Crystal defects 

 

Physical and chemical stability 

 

%RH profile (hygroscopicity) 

Solubility profile and dissolution rate 

All aspects of processing 
 

Dimensional 

Particle size distribution 

Particle morphology 

Particle surface structure 

 

Processing behavior: bulk density, 

agglomeration, flow/rheology, compaction, 

Particle permeability (i.e. particle 

adsorption), 

Bioavailability (drug absorption), 

Consistency and uniformity of the dosage 

form 

Chemical 

Organic and inorganic impurities, residual 

solvent and decomposition products 

Chiral forms and chiral separation 

Sterility (microbial limits) 

 

 

Toxicity  

 

Chemical, physical and enantiomeric 

stability  

Mechanical 

Brittle/ductile transitions, fracture stress, 

indentation hardness, stress/strain 

relaxation, yield pressure, Young's 

modulus 

 

 

Milling and tableting behavior  

 

Electrical 

Electrostatic charge distribution 

 

Agglomeration and flow properties 
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1.2 Goal of the study 

The purpose of this research is to propose a new methodology that provides real-

time information on the evolution of the crystallization process based on on-line FBRM 

measurements. In order to collect in-depth knowledge on the crystallization, the behavior 

of the system has to be described as extensively as possible. Information on kinetics, 

solubility, and polymorphism is therefore necessary knowledge that needs to be derived 

from the proposed methodology. To obtain this information from the FBRM raw data, a 

mathematical model needs to be developed. In a previous study (Barthe 2006) the 

relationship between chord length and population densities was established for octahedral 

crystals. Thus, the evolution of a crystalline population can be followed through FBRM 

measurements (Barthe 2006). 

Considering the fact that the pharmaceutical industry is highly regulated, any 

process adjustment or improvements of an already approved process is difficult, and 

optimization is therefore limited. The FBRM is an FDA approved device and can be used 

to efficiently monitor variations of the number and the geometry of the particles in the 

considered system. This study aims to provide a better understanding of the FBRM data, 

which will lead to the development of a predictive model through the use of population 

balances in order to design a more efficient process.  

The study uses the crystallization of acetaminophen from ethanolic solution as a 

model system and is organized as follows. First, an overview of the basic concepts will 

be given. In Chapter 4, a model relating the chord length measurements to the population 

density is developed. This model allows us to have crucial information on the evolution 

of the crystallization. Next, a study describing how sensitive is the method to noise in 
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data, to inherent confounding measurements, or to shape variations is realized in order to 

better our analysis of the data by providing more insight on the method itself. 

 Then, we show how the FBRM measurements were used to determine the 

nucleation and growth kinetics.. The knowledge of the evolution of the population 

density versus time leads to the estimation of the supersaturation, which in turn leads to 

the estimation of the system’s kinetics. So as to compute the growth kinetics, seeded 

experiments were designed in order to isolate this phenomenon and a model was 

developed to extract the kinetics from the data collected during those runs. Once the 

system is fully defined, a population balance model was used in order to establish a 

predictive model. 

 Finally, as Paracetamol is known to exhibit polymorphism and in the purpose of 

obtaining a better insight on the process, the FBRM was used to investigate polymorphic 

transitions. 
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CHAPTER 2 

BACKGROUND  

 

Crystallization of pharmaceutical compounds is a critical process in the 

pharmaceutical industry. Reliable in-depth information on the process is not easily 

accessed. The properties of the end product are highly dependant on the particle size 

density and the polymorphic form under which the considered drug crystallizes. In order 

to monitor different aspects, and further our understanding of the evolution of this 

manufacturing process, several tools and methods have been previously developed and 

are currently employed. 

Most of the current measurement devices available to monitor crystallization 

processes need to be correlated with specific models. This range of techniques is referred 

to as chemometrics and includes, among many others, methods such as calibration, basic 

statistics, curve fitting and / or pattern recognition. Chemometrics models are often based 

on an assumed spherical shape of the considered crystals, assumption that can lead to a 

large deviation from reality as many pharmaceutical compounds often display a highly 

non-spherical geometry (Shekunov et al. 2007).  

The main concern is that inconsistencies have been noticed between the results of 

these methods. This is most likely due to different assumptions, different treatments of 

the raw data and / or different pre-treatments of the solids. The main difficulty therefore 

lies in selecting, adopting and sometimes identifying the more suitable technique. The 

Process Analytical Technology (PAT) initiative was derived as a joined effort between 
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the FDA and the pharmaceutical companies to design reliable in-situ analytical 

technologies (Yu et al. 2004, Greenberg 2002) and thus address this issue.  

2.1 Measurement of population density and kinetics 

Efficiently monitoring the crystallization process to obtain information on kinetics, 

on the evolution of the solid population and / or to implement a control loop is a decisive 

step. Selecting one method from the wide assortment of measurement techniques and 

chemometrics methods available can be delicate (Shekunov & York 2000, Yu et al. 

2004). 

Usually a value related to the concentration of the solution is measured; 

chemometrics techniques are then used to estimate the supersaturation, the kinetics of the 

system and to obtain information on the crystal population. Sources of inaccuracies are 

mainly related to the chemometric method used such as calibration techniques (most of 

the models are based on spherical shape), sampling (leading to statistical error and loss of 

product) and sometimes pretreatment of the sample (dilution for example). Thus, for the 

purpose of lowering the sources of inaccuracies, it is preferable to select a tool that’s 

adapted to the process (Shekunov et al. 2007). 

There are different options to implement measurements of the particle’s population 

throughout the process (Yu et al. 2004):  

• In / off –situ laboratory analysis  

• A sample stream for analysis (can be fed back into the system) 

• Integration of sensors in the process, measurements realized in real-time (flow 

can be disturbed due to the insertion of a probe) 
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The main concern linked to the off line analysis is due to the delay induced by the 

laboratory analysis and the errors introduced by unreliable sampling processes and pre-

treatment of the samples. Therefore, another option might be preferred. 

Several analytical devices are available to monitor the evolution of the process; the 

most popular techniques are presented here.  

• Microscopy and image analysis are commons techniques. They are the only 

ones to allow the observation of individual particles. The main limitation of 

these methods is linked to the sampling process, the sample has to be 

representative of the whole system, and the accuracy of the analysis has to be 

confirmed through other techniques (Russ 1990, Pons & Vivier 1990, Kaye et 

al.1997). 

• Laser diffraction and static scattering techniques are becoming standards. They 

offer a short analytical time, a flexibility of operation and a high precision. Even 

though, these techniques present many advantages, they cannot be applied to a 

wide range of system (high concentration, high refractive index, needles-like 

crystals…) and often require a dilution of the sample (Van Antwerpen & Van 

Krevelen 1993, Malkin & McPherson1994 and Brown 1993). 

• ATR-FTIR (Attenuated Total Reflectance combined with Fourier Transform 

Spectroscopy) is widely used. The main limitation of this technique is the fact 

that a strong calibration method is needed (Togkalidou et al. 2001). 

• Dynamic light scattering (photon correlation spectroscopy) is primarily used to 

measure nanoparticulate systems due to the precision of the measurements for 
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the smaller sizes (Schrof et al. 1998). The offered measurement fails to provide 

information on the composition and optical properties of the system. Moreover, 

an important dilution of the sample is often required.  

• Coulter counter is a proficient technique for the analysis of non-agglomerated 

and stable suspensions as it provides a fast and reproducible measurement over 

a wide size range (Kaye et al. 1999, Allen 1997). The downsides of these 

techniques are due to the fact that calibration is a critical step and that it cannot 

be applied to all systems (particles with extreme shapes or a hydrophobic 

system for example). 

Other usual techniques include DSC, turbidimetry, densitometry, and ultrasonic 

attenuation. A wide variety of methodologies are thus available, the key limitations 

results from the chemometrics associated with the considered apparatus and used to 

exploit the raw data. The fact that inconsistencies have been observed in between the 

results given by different methodology constitute the main issue. Those errors are due to 

diversity of particle method of population analysis, interpretation of data and different 

process application. A major problem is to select and adopt which technique is the most 

relevant to the considered process. 

  A research challenge resides therefore in the development of a method based on 

the physical form of the solid, which can be highly non-spherical, that requires limited or 

no sampling. This technique should also allow the monitoring of major physical changes 

during the process and meets the FDA regulatory requirements as pharmaceutical 

processes are highly regulated. 
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2.2 Focused Beam Reflectance Measurement (FBRM) 

PAT are measurement techniques that are spreading in laboratory and industrial 

applications where they provide reliable, in-situ, on-line information about the evolution 

of a process. 

Among them, the FBRM offers a possibility to implement on-line monitoring of 

the evolution of a crystalline population by tracking changes in the number as well as in 

the geometry of the particles in the considered system.  

 

Figure 1. Tip of the Lasentec probe and schematic drawing of the chords scanned. 

The FBRM consists of a focused laser beam rotating at a constant velocity that 

scans the particles located in front of the probe’s sapphire window. When the light 

emitted by the laser hits a crystal, the sensors included in the probe record and analyze 

the backscattered signal. The collected data can be defined, as shown in Figure 1, as the 

distance between two edges of the particle; the FBRM calculates this distance by 

multiplying the rotating speed of the laser by the time of the corresponding 

backscattering signal. The instrument can acquire thousands of chord lengths per second 

and the range of detection is relatively wide, from 1 to 1000 μm. The counts of the chords 
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are organized in channels and expressed as a chord length histogram (chord counts / 

bins). The data collected by the Lasentec® software are available for direct observation 

on the computer screen and can be saved for further exploitation, the software is designed 

such as allowing the transfer of the data to an Excel™ file for future exploitation.  

The histogram obtained through FBRM measurement gives an indication of the 

real population. The chord length density q can be calculated from this histogram and is 

statistically related to the population density n, which allows meaningful characterization 

of a crystal product. The relationship between the two densities has been the subject of 

various publications such as Worlitschek et al. 2005, Wynn 2003, Ruf et al. 2000 and Li 

& Wilkinson 2005. A model linking the two densities and based on the geometry of the 

particle was explored and will be detailed in a subsequent section (Chapter 3-4). 

The FBRM present several advantages, it provides an on-line, real time analysis 

of the crystalline population. Errors due to pretreatment of the system such as sampling 

or dilution, which are frequently implemented with other measurement tools, is 

eliminated as the probe is directly inserted in the slurry. It is a robust instrument which 

presents a short analytical time, a high resolution for a wide range of particle size (1-1000 

µm), that can be used in high concentrated solutions, and within hash conditions which is 

often the case in pharmaceutical processes. Chemometrics related to the use of this device 

are heavily based on the particle shape (Wynn 2003 and Ruf et al.2000).  

Considering the fact that Pharma processes are heavily regulated, implementing 

any modification or control of an approved pharmaceutical process is tricky. The 

development of this apparatus followed the PAT initiative and is FDA approved. It can 
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thus be included without major issue into any pharmaceutical process as it is a rather non-

invasive technology; the flow being already turbulent is only slightly influenced. 

To summarize, the FBRM provides in-situ and real time information on the 

system evolution and efficiently tracks qualitative changes in particle population. 

Chemometrics are nonetheless essential to link the chord length density to the population 

density. 

2.3 Observation of polymorphs 

Polymorphism is an important aspect of the crystallization processes in pharmaceutical 

industry as many solids exhibit polymorphism (Brittain 1999). Polymorphism is defined 

as the ability of a substance to exist as two or more crystalline phases that have different 

arrangements and/or conformations of the molecules in the lattice. Those various 

crystalline forms exhibit the same chemical properties but differ in their physical, 

thermodynamic, spectroscopic, interfacial and mechanical properties (Table 2 - Brittain 

1999). Thus properties such as solubility and morphology are affected. It is interesting to 

note that for pharmaceutical compounds, compression and filtration properties, as well as 

dissolution rate and bioavailability of the drug are altered. 
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Table 2. Physical properties that differ among various polymorphs (Brittain 1999) 

Packing properties 

Molar volume and density; Refractive 

index; Electrical/thermal conductivity; 

Hygroscopicity 

Thermodynamic properties 

Melting and sublimation temperatures; 

Internal energy (Structural energy); 

Enthalpy (Heat content); Heat 

capacity; Entropy; Free energy and 

chemical potential; Thermodynamic 

activity; Vapor pressure; Solubility 

Spectroscopic properties 

Electronic transitions (ultraviolet-

visible absorption spectra); Vibrational 

transitions (infrared absorption spectra 

and Raman spectra); Rotational 

transitions (far infrared or microwave 

absorption spectra); Nuclear spin 

transitions (nuclear magnetic resonance 

spectra) 

Kinetic properties 
Dissolution rate; Rates of solid state 

reactions; Stability 

Surface properties 
Surface free energy; Interfacial 

tensions; Crystal habit (shape) 

Mechanical properties 

Hardness; Tensile strength; 

Compactibility, tableting; Handling, 

flow, and blending 
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Such diversity in crystal properties can be seen as an advantage but can also lead to 

major issues when uncalled for. The case of the HIV drug Ritonavir© in 1998 illustrate 

the large impact of polymorphism in the pharmaceutical industry, and how an unwanted 

and unforeseen change in the polymorphic form can lead to unfortunate consequences 

(Chemburkar et al. 2000). Stable and metastable forms can be identified. The stable form 

is the form with the lower solubility for the considered temperature range; several 

metastable forms can exist for the same substance. It is therefore preferred to base the 

formulation of a pharmaceutical drug on the thermodynamically stable form in order to 

limit the risk of phase transition. In some cases, the metastable form is preferred due to 

performance or regulatory issues (Morris 1999). For example, when the adsorption of the 

drug depends on the dissolution rate, as it is often the case for capsules or tablets, the 

metastable form may be preferred. In contrast, considering that the stable form is less 

likely to undergo transformation, it is preferentially used as a basis for suspensions 

(Guillory, 1999). This illustrates the fact that obtaining the adequate polymorph is 

crucial.  

It is interesting to note that, a slight modification in the crystallization process, such 

as a variation of the cooling rate or of the solvent, will produce different polymorph. 

Thus the process needs to be proficiently controlled to ensure the quality, conformity and 

safety of the end product. Pharmaceutical industry is heavily controlled, the end product 

has to be fully specified and an unpredicted and unwanted change in properties can lead 

to safety issues as well as large loss of time and money. Therefore investigating the 

polymorphic aspect of the crystallization process is an essential step.  
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It is important to note that beside direct observation there is no real technique to 

observe the shape of the crystals. To date, most of the knowledge acquired has been 

empirical and was established mainly through off-line techniques. There are four main 

off-line methodologies: crystallographic (Powder X-Ray diffraction: XRD), 

spectroscopic (IR, Raman, NMR), microscopic (Electron Microscopy: EM) and thermal 

(Differential Scanning Calorimetry: DSC). Those techniques provide useful knowledge 

on the solid but require sampling and often pretreatment of the sample (KBr pills for IR), 

which can catalyze a polymorphic transformation of the compound. Subsequent to the 

introduction of PAT, an increase in the use of on-line methods was noticed (Reutzel-

Edens 2006). 

In this work, Paracetamol is used as a model system, also known as 

acetaminophen, it exists under three known polymorphic forms: monoclinic (Form I, 

stable, space group P21/n), orthorhombic (Form II, metastable, space group Pbca) and 

Form III (unstable, not characterized) (Beyer et al. 2001). A comparison between the 

lattices of Form I and II can be seen in Figure 2. According to Ostwald rule of stage, the 

first form to crystallize is the kinetically stable one (lower energy) and from there a 

transformation can occur leading to a thermodynamically stable form. The formation of 

another polymorphic form can either be realized through solution-mediated 

transformation or through solid-state transition. In the case of paracetamol, it was 

established that Form II leads to Form I through a solvent mediated transformation (Al-

Zoubi et al. 2002). 
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Figure 2. On the left, orthorhombic lattice (a0 ≠ b0 ≠ c0 and α = β = γ = 90°) - On the right, monoclinic 
lattice (a0 ≠ b0 ≠ c0 and γ = β = 90° ≠ α) 

 
 

Due to the ease of compression of Form II into tablets (Sun & Grant 2000), 

studies have been realized in order to synthesize and retain this particular polymorph 

(DiMartino et al., 1996 and Nichols & Frampton, 1998). It has been shown that under 

given experimental conditions, Form II can be produced at a lab scale, unfortunately, the 

crystals have to be harvested relatively early after nucleation to prevent any solvent 

mediated transformation, thus strongly limiting their growth (Al-Zoubi et al., 2002; 

DiMartino et al., 1996 and Nichols & Frampton, 1998).  

Form I and Form II have been observed and characterized through techniques 

such as XRD, DSC and IR spectroscopy (Moynihan & O’Hare 2002; DiMartino et al., 

1996 and Nichols & Frampton, 1998). Considering the extensive knowledge acquired on 

these polymorphs, Acetaminophen constitute a good system to investigate and monitor 

polymorphic transformation via FBRM, as this tool is highly sensitive to physical 

changes in the system (see Section 2.3). The FBRM can therefore, successfully and in a 

timely manner, provide accurate on-line information on such a transformation 

(O’Sullivan et al. 2003, O’Sullivan & Glennon 2005). 

a0 
a0 

b0 
b0 

c0 
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Being able to monitor polymorphic transformations on-line through FBRM 

measurements will provide useful insight on the crystallization process and also 

constitute a key point of this study. 
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CHAPTER 3 

MODELING THE CHORD LENGTH DENSITY 

 

As was previously stated, the FBRM allows on-line determination of the chord 

length density (CLD), which is statistically related to the crystal size density (CSD) and 

depends on the geometry of the crystal. In this chapter, we focus on establishing a model 

to describe the relationship between CLD and CSD. The purpose of the present chapter is 

to be able to use the FBRM to monitor the evolution of CLD, then restore the CSD and to 

obtain CSD characteristics. 

3.1 Relating FBRM raw data to population density 

Estimation of the length-weighted population density, n1, from FBRM 

measurements requires relating n1 to the quantity actually measured, which is a histogram 

(chord length counts / bin) that will be referred to as k( is ), where is  is the mean chord 

length of the ith bin as defined by Equation (1).  

i i i+1s = s s      (1) 

The discretized chord length density, q(s) can then be computed as 

( )( )
b

1
1

i
i N

j i i
j

( s )( s )
( s ) s - s+

=

=

∑
kq

k
     (2) 

where Nb is the number of bins in which counts are stored. The bins limits are fixed by 

the FBRM; for the present work, 90 channels or bins are used. q(s) is normalized as 
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The chord-length density q(s) is then related to the length-weighted population density 

n1(L) by: 

= Ψ 1q n       (4) 

where Ψ is a conversion matrix relating the two density vectors. The length weighted 

population n1(L) is related to the number size population density ΔN(L) according: 

1

0

( )( )
( )

N L Ln L
N L L dL

∞

Δ
=

Δ∫
      (5) 

The discretized form is given by: 

b1

1

i i
i N

j j j
j

( L )L( L )
( L )L L

=

Δ
=

Δ Δ∑
Nn

N
     (6) 

As shown in the next section, the evaluation of Ψ requires a detailed knowledge of the 

shape of the crystal or particle in the system and recognition that size influences the 

probability of a specific crystal or particle being “observed” by the FBRM. This complex 

relationship has been explored by numerous researchers: e.g., Ruf et al., 2000; Wynn, 

2003; Worlitschek and Mazzotti, 2004; Li and Wilkinson, 2005; Li et al., 2005; and 

Barthe, 2006. Li based his model on a two-dimensional description of the particles, while 

Wynn proposed the use of moments to compute the conversion matrix and base his work 

on non-normalized functions. Ruf and Worlitschek worked with a more complex but 
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more realistic three-dimensional description of the particle, the logarithmic densities are 

normalized and the computation of the conversion matrix goes through the computation 

of individual chord length densities. In this work, the presented model will be based on a 

three dimensional representation of the crystals in agreement with Ruf and Worlitschek 

published work and on a logarithmic binning repartition. 

3.1.1 Computation of Ψ 

The FBRM utilizes reflections of a laser that is rotating at a fixed known velocity. 

The laser moves across an object in its path and, if the object has reflective properties, the 

sensor registers the time during which a reflection is measured. Based on the product of 

the rotating velocity and time of measurement, a chord length, s, between two edges of 

the object is calculated. Figure 3 illustrates how three-dimensional objects on the left of 

the figure are viewed in a two-dimensional form by the FBRM. Note in particular how 

possible chord lengths depend upon the orientation in space of the object and upon the 

path of the laser impinging on the object.  

 

 
Figure 3. On the left are several possible orientations of a crystal or particle, while on the right is 

presented the distribution actually seen and measured by the FBRM (orthogonal 2D-projection of 
the particles located on the left). The laser beam is normal to the plane of the paper. 
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The first crucial step is to provide an accurate representation of the geometry of 

the particle. A mathematical description of the crystal shape was formulated according to: 

s s s

0 0 0

1
k k k

x y z
a b c

+ + =      (7) 

where the parameters a0, b0, c0 are a function of the dimensions of the crystal and ks is 

determined by the crystal shape. For example, in the present study paracetamol is the 

crystal of interest. Because it crystallizes in an octahedral form, 30 0 0 2 2
a b c Lπ

= = =  and 

ks = 1 as displayed in Figure 4 (x, y, z are the cartesian coordinates in the frame of 

reference R). Where L is the characteristic size of the crystal, which is defined as the 

equivalent diameter. 

 
Figure 4. Representation of the octahedron in 3-dimensional space 

 
 

A Monte Carlo simulation was implemented to take into account the numerous 

possible orientations of a crystal in a slurry. Equation (7) provided a description of the 

crystal with a specific orientation as displayed in Figure 4. This crystal move freely in the 

slurry and thus later present the orientation shown in Figure 5. According to Euler's 

rotation theorem, any rotation in space can be described using three angles. Consider the 

"x-convention" (Figure 6) which is defined such as the first rotation is by an angle φ 
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around the z-axis, the second is by an angle θ around the x-axis, and the third is by an 

angle ψ around the z-axis. Thus the frame of reference R becomes R´, where x´, y´, z´ are 

the cartesian coordinates in the new frame of reference R´.  

 
Figure 5. Random orientation of the crystal in a 3-dimensional space 

 

 
Figure 6. Euler Angles ( Margenau, 1956) 

 

The next step is thus to include this random orientation of the crystal into the 

model. This was accomplished through the use of Euler’s Angles and Euler’s Theorem 

(Margenau & Murphy, 1956 and 1964) by using the rotation matrix:  

cosθcosψ - cosθsinφsinψ cosψsinφ + cosθcosφsinψ sinθsinψ
-cosψcosθsinφ - sinψcosφ cosψcosθcosφ - sinψsinφ sinθcosψ

sinθsinφ -sinθcosφ cosθ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M =  (8)  

The crystals geometry is thus defined in the frame of reference R’ by:  
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3
2 2

x' + y' + z' = Lπ
     (9) 

To provide an accurate description of the particle geometry into a three-dimensional 

Euclidian space in the frame of reference R, the coordinates in both frames of reference 

are linked through the rotation matrix M, as: 

  

x' x
y' = y
z' z

M
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

       (10) 

The equation describing the crystal’s shape thus becomes: 

( ) ( ) ( ) 311 12 13 21 22 23 31 32 33M x + M y + M z + M x + M y + M z + M x + M y + M z = L
2 2

π   (11) 

The generation of random values for the three angles φ, θ and ψ modeling a 

random orientation was the starting point of the Monte Carlo simulation. For each 

randomly selected orientation of a crystal of a given size L and shape, an orthogonal 

projection of the shape was generated as shown in Figure 7. This projection models what 

is actually viewed by the FBRM (Figure 3).  
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Figure 7. Representation of the shape viewed by the FBRM 

   
From this projection onto the z = 0 plane, a histogram was computed as shown in 

Figure 8.  

 
Figure 8. Computation of the chord length histogram (counts / bins) 

 
 

In order to properly define the projected shape and be able to accurately compute 

the histogram, for each yi defined by equations (12) and (13), the corresponding ith slice 

of the crystal along the x,z-plane is considered (Figure 9). A search for the longest 
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distance si projected on the x-axis is then realized over the zj, defined by equations (14) 

and (15). The chord length si, corresponding to the yi considered was therefore obtained.  

The step size Δy is fixed.  

y = Δyi i      (12)  

3 3y
2 2 2 2ii L Lπ π

∀ − ≥ ≥     (13) 

Similar definitions are applied to the z-axis, the step size Δz is fixed.  

z = Δzj j       (14)  

3 3
2 2 2 2jj L z Lπ π

∀ − ≥ ≥     (15) 

  
Figure 9. Representation of the ith slice of the crystal along the x,z-plane - 

Calculation of the projected chord length 
 
 

For each orientation, the chords si were classified into a histogram (chord length counts / 

bin). This histogram, established for a given orientation, was then normalized and 

weighted by the projected height of the particle to reflect the higher influence of larger 

si

yi is constant 
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particles to obtain qp(s, L). The weighted histograms resulting from all the randomly 

generated orientations were assembled to approximate the individual chord length density 

qp(s, L) of the considered crystal of characteristic size L. This density was then 

normalized according to the equation: 

( )p
0

1q s,L ds
∞

=∫      (16) 

This equation can be normalized to obtain a discretized version:  

( )( )
b

p 1
1

, - 1
N

i j i i
i

s L s s+
=

=∑q     (17) 

To provide an illustration, the calculated length-weighted chord length density 

and the corresponding specified length weighted population density are shown in Figure 

10 for a population constituted of octahedrons of characteristic size L = 100 µm. A peak 

is observed for the chord length 3
2 2

s Lπ
= , which was expected due to a ratio of 

3 1.3
2 2

π ∼  between the characteristic length and the length of the edge of the particle. 

This shows that the chord length density is highly dependant on the geometry of the 

crystal. In this example, we use Nb = 90 bins with logarithmic distribution, which 

corresponds to the setting used with the FBRM. 

The displayed chord length density was estimated through the computation of 

5,000 random orientations to provide a reliable statistical analysis. Similar simulations 

were run for 3,000, 5,000 and 10,000 random orientations; the result obtained for 5,000 

and 10,000 were comparable while the results obtained for 3,000 orientations were 
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irregular. Thus, 5,000 random orientations were determined to be sufficient for the 

octahedral shape here considered.  

The individual chord length density qp (s, L) for a crystal of a given characteristic 

size L is thus computed. The same procedure was repeated for a representation of sizes 

defined by the FBRM for a span of 90 bins within the range of 1 to 1000 µm. The same 

bins are used for s and L. 
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Figure 10. Simulated, normalized length-weighted chord length density for an octahedron of 
characteristic size L = 100 µm versus normalized population density 
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The individual simulated chord length densities qp (s, L) were used to build, in a 

step-by-step manner, the conversion matrix Ψ, as illustrated by equations (18) to (21). 

The relationship between the normalized length weighted population density n1(L) and 

the normalized chord length density q(s) is defined by : 

( ) ( ) ( )p 1
0

q s q s,L n L dL
∞

= ∫     (18) 

where n1(L) is related to the number size population density ΔN(L) according to Equation 

(5). This equation can then be discretized to form:  

( )
b1

1
1

i i
i N

j j j j
j

( L )L( L )
( L )L L L+

=

Δ
=

Δ −∑
Nn

N
    (19) 

Equation (18) is then discretized, thus defining the matrix Ψ as a function of qp (s, L) as 

shown below: 

( ) ( )( ) ( ) ( ) ( )
b b

p 1 1 1
1 1

N N

i i j j j j j
j j

s s ,L L - L L i, j L+
= =

= =∑ ∑q q n Ψ n    (20) 

qp(s,L) was computed for all s and L as previously described thus fully defining the real 

matrix Ψ : 

( ) ( )( )p
90*90

i j j+1 ji, j = s ,L L - L∈ qΨ ΨR    (21) 

3.1.2 Linking the chord length density q(s) to the population density n(L) 

The population density n obtained from a sieve analysis is volume-weighted, 

while FBRM data leads to a length-weighted population density n1(L). A weighting 

function α(L) is needed to account for this difference and enable a comparison between 
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restored (i.e. values from FBRM data) and true population densities (equations (25) and 

(26)).  

( ) ( ) ( )1n L = α L n L                  (22) 

n1(L) and n(L) are both linked to the number size population density ΔN(L) according to 

equations (5) and (23).  

3

3

0

N( L )Ln( L )
N( L )L dL

Δ

Δ
∞=

∫
     (23) 

This equation can then be discretized to form: 

( )
b

3

3

1
1

i i
i N

j j j j
j

( L )L( L )=
( L ) L L L+

=

Δ

Δ −∑
Nn

N
    (24) 

Thus the weighting function α(L) can be expressed through the following equation: 

3

0
2

0

1
N( L )L dL

( L )
L

N( L )L dL

∞

∞

Δ
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Δ

∫

∫
    (25) 

It can be discretized to form: 
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 The following example illustrates the previous methodology. Consider a 

population consisting of equal numbers of 10 µm and 100 µm octahedral crystals. The 

length-weighted population density n1(L)  can be calculated by Equation (19), with the 
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results shown by the dashed lines in Figure 11. Using the conversion matrix evaluated by 

Equation (21), the chord-length density q(s) can be calculated by Equation (20) to give 

the solid curve in Figure 11. As expected, the larger crystals have a larger influence on 

the overall density, sustaining that the probability of the FBRM laser impinging on a 

crystal is a function of its size. 
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Computing the chord length density from the population density is a relatively 

straightforward procedure. The next step is to invert the process in order to obtain the 

population density n from the actual FBRM measurements k. 

3.2 Restoration of the population density from the FBRM raw data 

The experimental measurements can be linked to the length-weighted chord 

length density q( is ) according to Equation (2) through the conversion matrix Ψ. It is 

essential to note that the matrix Ψ cannot be accurately inverted for crystals whose shapes 

are non-spherical, this inversion process is the focus of the next chapter.  
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CHAPTER 4 

ANALYSIS OF THE RESTORATION METHOD 

To review, the relationship between crystal population density and CLD obtained from 

FBRM is complicated and depends on the size and shape of the crystals. While 

estimation of chord-length density from the population density is relatively 

straightforward, the inversion of this procedure is problematic because the problem may 

be ill-conditioned for non-spherical particles. Since the relationship is a function of the 

crystal geometry, this chapter considers various non-spherical shapes, including highly 

challenging needles. In the present chapter, we examine how measurements from an 

instrument that has gained significant use can be converted to an accurate estimation of 

the population density.  

There have been several research groups that have made progress in dealing with this 

problem; e.g. there are several publications that analyze the relationship between 

population and chord-length densities and the recovery of the population density from the 

CLD (Barthe et al. 2006, Li et al.2005, Ruf et al. 2000, Worlitschek et al. 2003, and 

Wynn 2003).  In all of these, crystal shape is the main factor influencing the relationship.  

For example, Li and Wilkinson developed a model based on a 2-D elliptical 

representation of the crystal and used an iterative non-negative least-squares method to 

estimate the size distribution (Li et al. 2005).  Wynn used a method that can present 

difficulties with instability and is also based on a 2-D silhouette of the particles (Wynn 

2003).  Mazzotti and co-workers used a 3-D representation of the particle and defined a 

relationship between CLD and population density that goes through the computation of a 

conversion matrix (Ruf et al. 2000).  Constraints were also implemented to enable the 
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estimation of population density and were found necessary to overcome the issue of ill-

conditioning of the matrix that prevented the pure inversion of the matrix (Ruf et al. 

2000, Worlitschek et al. 2003, 2005).  

A goal of the present work is to develop a new, accurate and constraint-free methodology 

for estimation of the population density from CLD measurements for various crystal 

shapes. The results are expected to lead to a better understanding of the fundamental 

limits inherent to the restoration of the population density for a non-spherical crystalline 

population, and to provide an analysis tool for determining the best settings on the 

FBRM.  The first step in the methodology is computation of the conversion matrix, which 

is based on Monte Carlo sampling of random crystal orientations and is a function of the 

crystal geometry (Barthe et al. 2006).  This step is similar to the approach proposed by 

Mazzotti and co-workers (Ruf et al. 2000).  Unfortunately, the inversion problem — i.e. 

computation of population density from the CLD — is inherently ill-conditioned, and 

constraints on the restored population density must be imposed in order to obtain a 

unique solution for the population density.  The constraints used by Mazzotti and co-

workers typically have a physical basis: for example, non-negativity and normalization of 

the densities (Ruf et al. 2000, Worlitschek et al. 2003).  However, additional constraints 

may still be needed.  Approaches employed include regularization to enforce smoothness 

of the solution, and upper bounds on the residual between the measured CLD and the 

model-predicted value (Ruf et al. 2000, Worlitschek et al. 2003, 2005).  Such constraints 

enable the computation of a unique solution. However, it is not clear that this unique 

solution for the population density is accurate.  For example, some features of the 

population density might be overlooked due to the smoothness constraint imposed 
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through regularization. In a previous study, we used this approach to estimate the 

population density from a measured CLD for paracetamol crystallized from an ethanol 

solution (Barthe et al. 2006).  Good agreement was shown in comparing estimates 

recovered from FBRM measurements with those from ex-situ sieving measurements. 

The existing approaches do not give a full understanding of which features in the 

population density can be accurately estimated. Moreover, the limits and robustness of 

the restoration process are not well-understood or documented, and as a result there has 

been little industrial implementation of the direct inversion method. In this chapter, a 

comprehensive comparison of the inversion process is given for octahedral crystals, 

elongated slabs, and needles. For each shape, several cases involving different types of 

population density functions (gamma, exponential and bimodal) are analyzed, and the 

influence of noise in the CLD on the restoration process, as well as the performance of 

the method compared to the Constrained Least Square Method (CLSM), is examined.  

The method proposed here is based on a principal component analysis and the spectral 

method that is used to generate a basis for the population density; the basis elements are 

then divided into observable and unobservable subspaces. Population densities lying only 

in the observable subspace can be accurately reconstructed, while those lying in the 

unobservable subspace cannot. Additionally, we note that a combined approach is also 

possible for the inversion in which regularization and other constraints can be applied, as 

suggested by Mazzotti and co-workers (Ruf et al. 2000, Worlitschek et al. 2003, 2005). 

4.1 Methodology 

As seen in Chapter 3, the relationship between the length-weighted population density n1 

and the chord-length density q is defined by 
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1=q nΨ       (27) 

where Ψ is a square conversion matrix relating the two vectors, n1 and q, which describe 

the densities. The matrix Ψ is computed using Monte Carlo simulations and strongly 

depends on the geometry of the crystals [Barthe et al. 2006, Ruf at al. 2000]. 

As part of our inversion process, we apply the spectral method, which can only be 

applied to symmetric matrices. Therefore, both sides of Equation (27) are multiplied by 

ΨT, where the matrix ΨTΨ is symmetric: 

        T Τ
1=q nΨ Ψ Ψ                                 (28) 

Defining                                                          Τ=A Ψ Ψ                                           (29) 

and                                                                    T=b qΨ                (30)   

Equation (28) becomes                  1=b An                  (31) 

where A is a real symmetric matrix and b is a real vector.  

The goal here is to determine when the population density n1 can be accurately estimated. 

Therefore, the measurement of the chord-length density q will be used as a starting point, 

and the spectral method will be used to estimate the population density.  A basis U for the 

space of n1 is computed using principal component analysis of Ψ, which is equivalent to 

computing the eigenvectors ui of matrix A.  An advantage of computing this orthonormal 

basis is that the inversion of the relationship between both densities, as shown in 

Equation (27), can be accomplished using scalar computations only without requiring a 

matrix inversion.  In the new coordinate system defined by this basis, some coordinates 

may be ill-conditioned, which will be indicated by their near-zero eigenvalues λi.  We 
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refer to these coordinates as “unobservable” in the FBRM measurement. This approach 

allows us to analyze the inversion process and to compute reconstructions of n1 in the 

observable subspace.  The accuracy of the recovery and the sensitivity to noise are also 

investigated and quantified.  

4.1.1 Spectral method 

Assume that A is a real symmetric matrix and its eigenvalues λi and eigenvectors ui have 

been computed. An orthonormal basis U can be defined using the eigenvectors, and all 

eigenvalues satisfy λi ≥ 0 (Beers 2007). Therefore, it is possible to describe any real 

vector b by its projection onto this basis according to the following equation: 

( )
( ) ( )

1 1

m m

i i= =

= =∑ ∑i
i i i

i i

u • b
b u u • b u

u • u
    (32) 

Because the basis is normal, = 1i iu • u . To solve Equation (31), we express n1 in terms 

of the basis U, with the αi defined as real but unknown scalar coefficients. 

1

m

i
i=1

= α∑ in u          (33) 

Therefore, Equation (31) becomes 

( )
1 1

m m

i
i i

α
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑i i iA u u • b u     (34) 

Since A is a linear operator,  

( )
1 1

m m

i
i i

α
= =

=∑ ∑i i iAu u • b u     (35) 
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and λi and ui are, respectively, the eigenvalues and eigenvectors associated with A, such 

that 

iλ=i iAu u      (36) 

Equation (35) can be simplified to 

( )
1 1

m m

i i
i i

α λ
= =

=∑ ∑i i iu u • b u     (37) 

Therefore,                 ( )
i

i

α
λ

= iu • b
, i = 1,..m                    (38) 

Equation (31) can now be solved for n1, 

( )
1

1

m

i iλ=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ i

i

u • b
n u       (39) 

We use Equation (17) to compute n1 from the chord-length density q, which is the 

foundation for our estimation of population densities from chord-length measurements. 

Considering that λi is the denominator in Equation (39), this method can only be applied 

if all eigenvalues are non-zero. However, any eigenvectors that have zero eigenvalues 

should not be inverted anyway, since they represent features in n1 that have no influence 

on q.  The eigenvectors are thus divided into two subsets and corresponding subspaces: 

an observable set that corresponds to non-zero eigenvalues, and an unobservable set 

corresponding to zero eigenvalues.  Eigenvalues that are approximately zero correspond 

to ill-conditioned coordinates and they are also included in the unobservable subspace.  

They represent features in n1 that have a negligible effect on q.  We arrange the 

eigenvalues in ascending order, and m´ is defined to delineate the two subspaces. Thus:  
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1,obs
1

m

i
i m'

α
= +

= ∑ in u      (40) 

1,unobs
1

m'

i
i

α
=

= ∑ in u      (41) 

Only the observable portion of n1 can be estimated from q, so Equation (39) is replaced 

with the modified version: 

 ( )
1,est

1

m

i m' iλ= +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ i

i

u • b
n u     (42) 

In the absence of noise in the chord-length measurement, 1,obs 1,est=n n .  Ideally, 1,obs 1≅n n  

and 1,unobs ≅n 0 , but if this is not the case, then an accurate estimate of n1 cannot be 

obtained from the FBRM measurements, at least not without additional information on 

the characteristics of n1. 

The spectral method can be used to analyze the estimation process for a pre-specified 

population density n1 (Analysis), or it can be used to estimate an unknown n1 from FBRM 

measurements (Estimation).  In practice, the analysis should be performed for expected 

values of n1, prior to the use of the method to estimate the unknown n1. We provide 

stepwise procedures of the two applications in the following summaries: 

4.1.2 Analysis 

1. Determine the shape of the crystals, the accuracy εtol desired in the estimated n1, 

and the standard deviation σ of the measurement noise for each bin in q. 

2. Compute the conversion matrix Ψ for the desired shape and then the 

corresponding symmetric matrix A, as defined by Equation (29). 
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3. Compute the eigenvalues and eigenvectors of A.  Plot the eigenvalues λi. 

4. Determine the cutoff  (m´)  to achieve the desired accuracy in n1  

2

1

1
1

b

b

N

i
i

tolN
2
,i

i

e

n
ε=

=

≤
∑

∑
      (43) 

1 1i ,i ,est,ie = n - n      (44) 

where ei is the error in n1 in the ith bin.  The value of m´ is determined by 

projecting n1 onto different subspaces via Equation (42) (i.e. varying m´), until 

the error in Equation (21) is less than εtol.  m´ should be as large as possible while 

still achieving εtol, since small λi will tend to amplify FBRM noise in q during the 

inversion process, which is due to the eigenvalue term in the denominator of 

Equation (42).  

5. Add a zero-mean noise vector v with standard deviation vector σ to q, such that q 

= Ψn1 + v. The cut-off m´ may need to be adjusted depending on this noise level. 

If λm´+1 < 1, noise in q will be amplified in n1,est.  However, if σ is small, some 

amplification may still be acceptable.  Our guideline for the choice of m´ is that 

1

max

m'

σ
λ +

 < εtol
1

bN
2
i

i

n
=
∑ .  The left-hand side is the noise expected in n1, due to the 

sensor noise being amplified through the conversion matrix.  The right side is the 

typical error allowed in the noise-free estimate n1,obs as in Equation (21).  If this 

criterion is not met, noise will cause significant error in the estimate, and it will 

be necessary either to increase εtol or to decrease the noise level by, for example, 
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increasing the integration time of the FBRM, in order to achieve a final estimate 

with εtol.   

6. Compute n1,est using Equation (42), for several realizations of the sensor noise, 

and verify that n1 ≅  n1,est within accuracy εtol. 

A more detailed error propagation analysis could be performed in Step 5, using the 

conversion matrix Ψ and the linearity of the equations.  However, since Ψ is of order 1, 

due to the normalized nature of q and n1, our guideline stated above also provides 

reasonable predictions. 

4.1.3 Estimation   

When the goal is to estimate an unknown n1 from a measured noisy q, the following 

procedure can be used:  

1. Determine the shape of the crystals, the accuracy εtol desired in the estimated n1, 

and the standard deviation σ of the measurement noise for each bin in q.  In 

general the noise level will not be known exactly, but can be estimated from 

repeated experiments, steady-state experiments, or even a stochastic model of the 

crystallization process. 

2. Compute the conversion matrix Ψ for the desired shape, and then the 

corresponding symmetric matrix A as defined by Equation (29). 

3. Compute the eigenvalues and eigenvectors of A. Plot the eigenvalues λi. 
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4. Select m´ based on the FBRM noise level, using 
1

max

m'

σ
λ +

 < εtol
1

bN
2
i

i

n
=
∑ .  This 

criterion is used to set m´ so that the effect of measurement noise of n1 does not 

exceed εtol.  (Note that this does not guarantee a good reconstruction of n1 in the 

observable subspace.) 

5. Use Equation (42) to compute n1,est. 

There is no guarantee on the accuracy of the reconstruction in the observable subspace, 

since n1 = n1,obs+ n1,unobs, and n1,unobs cannot be recovered by definition since q is not 

sensitive to this portion of n1.  If n1,unobs  is not approximately zero, then there will be 

significant error in the reconstruction.  This is why it is important to perform the analysis 

procedure for typical expected n1 vectors, and to examine the eigenvalue spectrum.  In 

the Results and Discussion section, we observe that the basis vectors for low values of m´ 

tend to be at high frequency and may not be needed to reconstruct typical n1 distributions.  

To summarize, it is clearly not possible to reconstruct every possible n1 vector for a 

conversion matrix that is not full rank.  However, we show that for many population 

densities of practical interest in crystallization, accurate estimation should be possible as 

long as the noise level is not too high.  
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Figure 12.  Crystal shapes studied: Octahedral, slab (aspect ratio 1:1:5) and needle  
(aspect ratio 1:1:20). 

 

4.2 Results 

The previously detailed method is tested on several realistic examples in order to evaluate 

the accuracy of the estimated n1; three crystal morphologies and three distributions 

representing typical crystallization operations are investigated.  Since the relationship 

defined by Equation (27) is a function of the shape of the crystals, we consider the three 

non-spherical shapes shown in Figure 12 as being representative of broad classes of 

crystal categories: bulky, elongated and needle-like.  To characterize the size L of each 

crystal, we use the equivalent spherical diameter, based on the volume of the crystal.  

The conversion matrix Ψ was computed for each of the three geometries considered, and 

the corresponding matrix A was computed according to Equation (29).  A is a real 

symmetric 90 × 90 conversion matrix (m = 90), since our FBRM is set to classify the 

chord length in 90 channels or bins.  The bins are defined by the log scale used by the 

FBRM, and they are the same for both q and n1. Since Ψ depends on the crystal shape, A 
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is also different for each shape. First, we determine which vectors in the basis have an 

influence on the chord-length density. The goal is to reduce the space defined by the 90 

basis vectors to a smaller invertible subspace. Consequently, the space is divided into two 

subspaces: an observable one and an unobservable one. The eigenvalues of the matrix A 

are computed for each of the three geometries, and are plotted in Figure 13. 
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Figure 13.  Eigenvalues of A for octahedral, slab and needle-like crystals. 
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For the octahedral crystals, the non-zero eigenvalues (solid curve) span seven orders of 

magnitude. The first five eigenvalues are identically zero and therefore must be in the 

unobservable subspace. The challenge, in this case, is to determine a value of m´ > 5 that 

enables accurate estimation, especially in the presence of noise.  From Equation (15), we 

can see that features in n1 associated with eigenvalues of λ > 1 will be amplified in q, 

while eigenvalues of λ < 1 will attenuate the corresponding features in q.  For the 

octahedral crystal, this transition occurs around m´ = 55. 

The eigenvalues of the slab-like geometry are shown by the dotted curve in Figure 2.  

Most of the eigenvalues range over three orders of magnitude.  However, a sharp drop-off 

exists in which the first 11 eigenvalues are extremely small.  Therefore, the cutoff m´ 

should not be set lower than 11 (or else the inversion may amplify noise by a factor of 

1012).  The needle-like geometry exhibits qualitative behavior that is similar to that of the 

slab.  Most λ's extend over 3 orders of magnitude.  The cutoff value m´ is limited by the 

17 extremely small eigenvalues (dashed curve). For both the slab and the needles, we 

notice a different distribution of the eigenvalues, compared with the octahedral shape, 

due to their highly non-spherical geometry.   

Although these three shapes exhibit different qualitative features, it is not clear at this 

point which will be more difficult to invert.  The slab and needle have few eigenvalues 

that are greater than 1, so they may be more likely to amplify noise in the inversion.  

However, all three shapes have a large number of eigenvalues that are greater than 10-2, 

so if the original noise level in q is low, then an amplification of 100 may still be 

acceptable.   
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In order to evaluate the inversion process, we must also consider the particular crystal 

size distribution.  The population density distributions examined here were chosen 

because each represents a particular mode of crystallizer operation and resulting product 

size distribution, i.e. 

• Gamma distribution − representative of crystals produced in batch crystallization 

• Exponential distribution − representative of crystals produced in continuous 

crystallization in which anomalous growth, agglomeration, and breakage can be 

neglected 

• Bimodal distribution − representative of complex batch crystallization in which 

seeding or other phenomena lead to the crystal size distribution having two 

modes. 

We first discuss in detail the results of our analysis of systems in which the crystal 

population density follows a gamma distribution function. Using the outcome as a point 

of departure, we then contrast that behavior with results obtained from exponential and 

bimodal distribution functions. Finally, we impose noise on a hypothetical signal from an 

FBRM instrument to explore how the interpretation of that signal is affected by the noise. 

The plots omitted in this chapter for brevity concerns can be found in Appendix A. 

4.2.1 Gamma distribution 

Gamma distribution functions are defined by: 

( ) ( )
2

-
-1

1 2
2-1 !

iL

i i
eL L

θ
β

βγ
β θ

=n     (45) 
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where β is a shape factor, θ2 is a scale parameter and γ2 is a normalizing coefficient. In 

the present work, the parameters are selected so that Lmode = 400 μm (β = 9, θ2 = 0.5 and 

γ2 = 0.01). 

4.2.1.1 Octahedral crystals 

We first consider octahedral crystals whose length-weighted population density follows a 

gamma distribution in the limit of no FBRM noise.  Following the recommended 

Analysis and setting εtol = 0.01, so that the reconstructed n1 will be accurate within 1 %.   

Therefore, we compute that the cutoff value m´ is 65, which lead to λ’s ranging over 3 

orders of magnitude in the observable subspace. Figure 14 illustrates the good 

reconstruction of n1 in the observable subspace, according to Equations (40) and (41), 

such that 

1 1,obs 1,unobs 1,obs= + ≅n n n n         (46) 
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Figure 14.  Projection of n1 onto observable and unobservable subspaces, and recovered population 

density through the spectral method for an octahedral shape, using m´ = 65.  Similar plots are 
obtained for slab and needle-like crystals. 
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Having established a good projection using m´ = 65, we now focus on the estimation of 

n1 from a measured chord-length density q.  Using the gamma distribution in Figure 14 

and using Equation (27), we obtain the “measured” q.  Equation (42) is then used to 

estimate n1, using only the last 25 (90 – 65) eigenvectors of A.  An accurate 

reconstruction of n1 is obtained, as both the initial density n1 (solid curve) and the 

restored density n1,est (cross symbols) are in agreement, as shown in Figure 14. As 

mentioned previously, in the noise-free limit, n1,obs = n1,est by definition, which is 

confirmed by Figure 3.  Figure 4 provides further confirmation of the successful 

inversion.  The original chord-length density q (solid curve) coincides with the recovered 

population density qest = Ψ n1,est (cross symbols) and with qobs = Ψ n1,obs (circle symbols).  

Similarly, qunobs = Ψ n1,unobs (dashed line) is approximately zero.  A slight waviness in qest 

can be seen at the smallest sizes — this trend will be seen across the all shapes and 

distributions we analyze in this paper. 
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4.2.1.2 Slab-like crystals (Aspect ratio 1:1:5) 

We now consider slab-like crystals with the gamma distribution.  As with the octahedral 

crystals, we set εtol = 0.01, which results in an eigenvalue cutoff of m´ = 54.   Thus, 36 

basis vectors will now be used, compared to 25 for the octahedral crystals.  From Figure 

2, we see that for the octahedral crystals, λm´+1 was slightly greater than 1, while now 

λm´+1 is less than 0.1.  Thus, the inversion of the gamma distribution may be slightly more 

noise-sensitive for the slab.  Similar agreement is achieved among the recovered n1,est, the 

projected n1,obs, and the initial length-weighted population density n1, as in the octahedral 

case of Figure 3.  Again the projection onto the unobservable subspace is negligible due 

to our setting of εtol.  Good agreement was also achieved in chord-length density, similar 

to that plotted in Figure 4 for the octahedral case. 

4.2.1.3 Needle-like crystals (Aspect ratio 1:1:20) 

For needle-like crystals, the cutoff is again determined by the 1 % precision imposed on 

the reconstructed n1 by εtol, resulting in m´ = 37.  Thus, a larger number of eigenvectors is 

needed for the needle, compared to the slab, although the value of λm´+1 is slightly greater 

than for the slab.  Due to the similar characteristics of their eigenvalue spectrum, we 

expect similar inversion properties for the needle and slab, and this should be true with 

and without noise.  The projections of n1 and their corresponding q all lead to good 

reconstructions, with results again similar to those pictured in Figures 3 and 4.  

Additional figures showing the evolution for slab and needle like crystals are available in 

Appendix A. The results for the gamma distribution for all three shapes are summarized 

in Table 1. 
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4.2.2 Exponential distribution 

A key difference between exponential and gamma distributions, is that the former has 

larger number of small crystals. A nucleation event is indicated by an increase in the 

number of small crystals, which is a common disturbance in crystallization, and thus it is 

important to be able to estimate accurately the population of small crystals. 

4.2.2.1 Octahedral crystals 

As with the gamma distribution, we specify εtol = 0.01.  However, with the exponential 

distribution, m´ = 32 is now required to achieve an accurate reconstruction, compared to 

m´ = 65 for the gamma distribution.  This comparison can also be seen in Table 1.  The 

eigenvalues required for this value of m´ = 32 now span almost 5 orders of magnitude, 

which can be seen in Figure 2 and also in Table 1.  Figure 5 illustrates the projection of 

n1 onto the observable and unobservable subspaces. A 1 % error was allowed in the 

projection, and it is visible in Figure 5 at the smallest sizes, suggesting that the recovery 

may be most challenging there. 
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Figure 16.  Projection of n1 from an exponential distribution onto the observable and unobservable 
subspaces, and recovered population density through the spectral method for an octahedral shape, 

using , using m´ = 32. 
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4.2.2.2 Slab-like crystals (Aspect ratio 1:1:5) 

Figure 6 shows the exponential distribution for the slab-like crystals.  Recall that the 

minimum value of m´ is 11 for this crystal shape, due to the 11 near-zero eigenvalues in 

Figure 2.  With this constraint, we are now not able to achieve εtol = 0.01, and by setting 

m´ = 11 we achieve an error of 14.2 % (εtol = 0.142).  Figure 6 illustrates the resulting 

error when n1 is projected onto the observable subspace.  In fact, the error is concentrated 

at the lowest sizes, and the reconstruction is quite accurate over the majority of the sizes.  

Note that the error defined by Equation (21) does not take into account the width of each 

bin, and that the bins are logarithmically distributed such that the bins at the smallest 

sizes have the smallest width.  This causes the small crystals to dominate our error 

calculation.  In any case, we use this measure of error in part because it may be desirable 

to estimate these smallest bins accurately so as to monitor nucleation events.  Of the 

eigenvectors that are retained for the observable space, the range of eigenvalues is only 3 

orders of magnitude.  Thus, these are easily invertible in the noise-free case considered 

here, and Figure 6 shows that n1,obs and n1,est are virtually identical. 
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Figure 17.  Projection of exponential distribution n1 onto the observable and unobservable subspaces, 

and recovered population density through the spectral method for a slab shape, using m´ = 11. 
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4.2.2.3 Needle-like crystals (Aspect ratio 1:1:20):   

The results for the needle-like crystals are similar to those of the slab.  Due to the near-

zero eigenvalues, the minimum value of m´ is 17, and this cutoff yields a projection error 

of 30.8 %.  Oscillations for the lower sizes are, as shown in Figure 7, even more 

noticeable due to the highly non-spherical shape of the crystals, and the accuracy of the 

restoration of the fines population (below 50 μm) is poor.  However, the reconstruction 

for crystals larger than 50 μm is good. 
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Figure 18. Projection of exponential distribution n1 onto the observable and unobservable subspaces, 
and the recovered population density through the spectral method for a needle shape, using m´ = 17. 
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Compared to the gamma distribution, the inversion of the exponential distribution is more 

challenging.  Due to the large number of crystals at the smallest sizes, and the small bin 

sizes at the smallest crystal sizes, it is difficult to estimate the fines distribution 

accurately, particularly for the slab-like and needle-like crystals. 

4.2.3 Bimodal distribution 

Bimodal distributions can present significant challenges in analysis and modeling, and so 

we examine how our methodology handles such systems. The same crystal shapes are 

considered, and the same estimation procedure is employed. The bimodal distribution is 

constructed from two gamma distributions, and estimates are achieved at 1 % error for all 

crystal shapes.  This comparison can be seen in Table 1. Figures showing the evolution 

for slab and needle like crystals are available in Appendix A. 
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Figure 19. Projection of bimodal n1 onto the observable and unobservable subspaces, and the 

recovered population density through the spectral method for an octahedral shape, using m´ = 57.  
Similar plots are obtained for the slab and needle-like crystals. 
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 Figure 19 shows the projection and reconstruction for the octahedral crystals.  Good 

reconstruction is seen, although there is a slight but visible component in the 

unobservable subspace at the smallest sizes.  Results similar to those with the gamma 

distribution are seen for the slab-like and needle-like crystals.  The plots are not shown 

here, but the results are summarized in Table 1.  Compared to the gamma distribution, 

more eigenvectors are required to achieve the 1 % accuracy in the projection, but the 

corresponding ranges of the eigenvalue magnitudes in the observable subspace have not 

increased significantly (compared to gamma), indicating that the estimation of n1 in the 

observable subspace will not be particularly difficult or sensitive to noise. 

Table 3. Partition of the space and estimation error for the nine different cases. 
 

  Gamma Exponential Bimodal 

  m'  65  32  57 
Octahedral λmax/λm' 473.4  69279   1185.4 

  Error  1 % 1 %  1 %  

  m'  54  11 21  
Slab λmax/λm' 528.0  1997.5   1233.0 

  Error  1 % 14.2 %  1 %  

  m'  37 17   18 
Needle λmax/λm'  589.5 1354.7  1345.3 

  Error  1 % 30.8 %  1 %  

 
 

4.2.4 Influence of noise 

In the noise-free case, the spectral method provides good estimates of n1 for the gamma 

and bimodal distributions for all three crystal shapes considered.  When the exponential 

distribution is analyzed, the estimation is good except at the smallest crystal sizes, in 

which case the estimates are highly oscillatory around the actual mean.  However, real 
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CLD measurements are noisy, making estimation of the population density more 

difficult, and this will be especially true for the basis vectors with small λ.   

To investigate the role of noise, we measure the steady-state noise in each channel, using 

our FBRM measurements obtained for paracetamol crystallization from ethanol [1].  We 

estimate the standard deviation vector σ of the FBRM signal for each bin of q, and then 

add this noise to the noise-free q computed for each of our three distributions.  Because 

the experiments and associated noise are for octahedral crystals, we analyze that shape 

only.  In general, the noise may also depend on the crystallization time and other details 

of the process, and our steady-state noise levels are only intended to explore the effect of 

noise in the FBRM measurements.  The noise level also depends on the integration time 

of the FBRM measurement, and we consider measurement time increments of 10 s, 20 s 

and 30 s. Increasing this time step increases the number of counts in each bin and 

therefore decreases the noise level.   
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Figure 20.  Addition of noise to the q computed for the gamma distribution. 
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To obtain insight on the influence of noise on the recovery process, a zero-mean 

Gaussian-distributed noise vector v is added to the initial q (Figure 20).  Notice that the 

highest noise appears in the smallest bins, further complicating the estimation. The 

recovery of the population through the spectral method gives mixed results, shown in 

Figure 21. The recovered population density displays oscillations up to 200 μm for a 

sampling time of 10 s (circle symbols), but the estimation is greatly improved when the 

sampling time is increased to 20 s. The results are shown in Table 4., with the definition 

( ) ( )max 1 1, , 1,max -est i ii
e =n n n      (47) 
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Figure 21.  Restoration of the gamma population density from a noisy chord-length density,  

using m´ = 65. 
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Note that the same value of m´ = 65 from the noise-free study is used here.  Earlier in the 

paper we suggested the guideline of λmax/λm´+1 to predict the error in n1 due to noise.  We 

see in Table 2 that our guideline is consistent with these results.  If we consider even 

longer sampling times than 30 s for the gamma distribution, the error in n1 will flatten out 

and be dominated by the 1 % reconstruction error from the unobservable subspace, while 

σmax/λm´+1 will continue to decrease as the sampling time increases.  Thus no benefit will 

be achieved with longer sampling times. 
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Figure 22. Restoration of the exponential population density from a noisy chord-length density,  

using m´ = 32. 
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When the exponential distribution is considered, an average acquisition time of 20 s is no 

longer sufficient to reduce the noise level to an acceptable one (Figure 22).  A sampling 

time of 30 s (cross symbol) is now required for good estimation.  Once again, the error is 

mainly due to the inaccuracy of the estimation of the fines population.  As in the noise-

free case, the bimodal distribution is more difficult to estimate than gamma, but is easier 

than exponential. 
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Figure 23.  Comparison of the spectral method to CLSM, for a noise based on a measurement every 

20s, for the bimodal distribution. 
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Figure 24.  Comparison of the spectral method to CLSM, for a noise based on a measurement every 

20s, for the exponential distribution. 
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A comparison between the previously detailed method and the CLSM method described 

by Ruf et al. (Ruf et al. 2000) is shown for the bimodal distribution in Figure 23 and for 

the exponential one in Figure 24. The CLSM method provides better results for the 

exponential distribution as it imposes smoothing of the distribution, whereas our method 

performs better at restoring sharp features of the population density, which are smoothed 

out by the CLSM.  In practice, the best approach may be to combine our approach with 

additional smoothing, when deemed appropriate (i.e. exponential distributions). 

Table 4.Estimation errors for octahedral crystals when measurement noise is added (averaged over 
100 runs). 

 
 Gamma Exponential Bimodal 

σmax(q) 3.59×10-4 3.59×10-4 3.59×10-4 
λm' 3.57 0.28 1.05 

σmax(q)/λm' 1.00×10-4 1.30×10-3 3.42×10-4 
emax(n1) 1.16×10-4 1.54×10-3 3.23×10-4 

10 s 

Error 2.52 % 10.32 % 6.42 % 
σmax(q) 1.80×10-4 1.80×10-4 1.80×10-4 

λm' 3.57 0.28 1.05 
σmax(q)/λm' 5.04×10-5 6.52×10-4 1.71×10-4 
emax(n1) 4.89 ×10-5 6.71×10-4 1.87×10-4 

20 s 

Error 1.21% 4.82 % 2.71 % 
σmax(q) 8.98×10-5 8.98×10-5 8.98×10-5 

λm' 3.57 0.28 1.05 
σmax(q)/λm' 2.52×10-5 3.26×10-4 8.55×10-5 
emax(n1) 2.81×10-5 3.56 ×10-4 8.69 ×10-5 

30 s 

Error 0.81 % 1.05 % 0.91 % 
 

 

To summarize the main points of this chapter, the FBRM is a useful tool in monitoring 

the progression of chord-length densities in batch crystallization. The methodology 

demonstrated here offers an accurate, constraint-free restoration of the population 

density, which can be obtained from FBRM measurements. The spectral method can be 
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efficiently applied to a wide range of non-spherical particle shapes, as well as multimodal 

and sharp population density functions.  

 The principal component analysis offers a straightforward, constraint-free and timely 

alternative to restore the population density accurately from chord-length density data.  It 

also provides an analysis of which aspects of the population density can accurately be 

restored. The size of the observable subspace is a function of the crystal geometry and the 

precision desired.  Note that as the geometry becomes more elongated, a drop in the 

eigenvalues is seen which defines the limits of the accuracy of the recovery process, as it 

sets a limit to the size of both observable and non-observable subspace and the accuracy 

of the recovery. As the needles get thinner, the size of the unobservable subspace 

increases and the restoration of the population density for the lower size ranges are more 

challenging. The accuracy of the proposed method is therefore limited by the geometry of 

the considered population.  The projections onto the observable and unobservable 

subspaces tend to be highly oscillatory in small sizes range. Those features are more 

difficult to estimate because all crystal sizes contribute to small chords while only larger 

ones create large chords.  Note that extreme oscillations can occur in the smaller bins 

sizes during the restoration and also that the smaller bins are more sensitive to noise, thus 

making it harder to effectively estimate those populations. A smoothing can still be 

applied later to the restored density if needed.   

Estimation is limited by the noise in measurements of the chord-length density, which 

can be reduced by increasing the data acquisition time frame. The data presented here 

shows that any time frame above 30 s will suffice to reduce the noise to an acceptable 

level for the octahedral crystal shape.  Also, it was shown that, when compared to CLSM, 
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the spectral method provides a better restoration of population densities with sharp 

features.  Although our method provides an alternative method for estimating population 

density, its greater contribution may be for the analysis; specifically, the analysis can help 

tailor the FBRM settings of number of bins, size distribution of bins, and integration 

time, for the particular crystal shape and distribution function appropriate to a particular 

process.  Furthermore, the presented methodology has great potential to be the basis for a 

control scheme that manipulates the population density produced from FBRM raw data. 
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CHAPTER 5 

ESTIMATING SUPERSATURATION, NUCLEATION AND 

GROWTH KINETICS  

 
 

Being able to observe on-line and in real-time the evolution of the population 

density constitutes a major asset in understanding crystallizer operation as well as the 

phenomena that influence product quality. This observation leads to another important 

advantage, namely the ability to compute the supersaturation and derive the kinetics of 

the system. Considering that a critical step towards better control of a crystallization 

process is the estimation of the system nucleation and growth kinetics (Hornedo 1999, 

Liu 2004), the ability to derive such valuable information from FBRM data is useful. 

Moreover, the nucleation and growth kinetics are involved in the resolution of the 

population balance and thus influence the final crystal size distribution (Mullin 2001, 

Randolph 1971). Such abilities provide the user with the necessary tools for developing a 

predictive model and implementing efficient control.  

Empirical methods have, thus far, helped gain qualitative information on growth 

and nucleation phenomena. A number of analytical techniques, combined with an 

appropriate model, are available to monitor the evolution of the crystallization process. 

Typically, nucleation kinetics are estimated from measurements of either transient or 

steady state crystal size distributions, induction times, or metastable zone width. 

Estimates are then correlated with process variables such as supersaturation (Kashiev 

2003). A wider range of methods are available for estimates of growth kinetics. These 
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measure the supersaturation of the solution and relate it to the growth rate, as described in 

Chapter 2.  

In this chapter, we will explore the possibility of estimating in-situ, and in real 

time the solute concentration from FBRM data. The method links the measured CLD to 

the supersaturation, thus enabling its estimation. This in turn enables the estimation of the 

kinetics of the system, namely growth and primary nucleation kinetics. The batch cooling 

crystallization of paracetamol in ethanol solutions will continue to be used as a model 

system.  

The chapter is organized as follows: in the first section the monitoring of the 

supersaturation is considered. Then, the monitoring of the evolution of the driving force 

is used to determine the system kinetics for both growth and primary nucleation. Finally, 

this procedure is applied to experimental data, and the kinetics of the paracetamol-ethanol 

system are determined. Once the growth kinetics are known, they can be used in solving 

the population balance model to compute the crystal size distribution, which is the subject 

of Chapter 6. 

5.1 Methodology 

There are two key phenomena in crystallization, nucleation and growth, both of 

which are functions of supersaturation and temperature. First, we develop a model that 

enables us to estimate the supersaturation as a function of time via the use of the CLD 

data. Then this knowledge is used to establish the growth and the nucleation kinetics of 

the system. 
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5.1.1 Estimation of number size population  

As seen in Chapter 3, the relationship between the length-weighted population 

density, n1, and the chord-length density, q, is defined by 

1=q Ψn ,     (48) 

where Ψ is a conversion matrix relating the two vectors, n1 and q, which describe the 

densities. The methodology described in the previous chapters is used here to calculate n1 

through FBRM measurements. The density n1 is normalized and therefore in order to also 

compute ΔN, which is the number of crystals in a defined size range. A scaling factor has 

to be taken into consideration, which is the total number of counts, NT. This is also 

measured by the FBRM. 

It is assumed that the total number of chord counts, NS, is related to the total 

number of crystals, NT, through the ratio between the scanned volume, VS, and the total 

volume of the slurry, VT, according to the following equations: 

S SV v t= δ ε Δ�      (49) 

S
T T

S

NN V
V

=      (50) 

where δ is the depth scanned by the laser (estimated to be 1.50 × 10-3 m), ε is the width 

scanned by the laser (estimated to be 5.80 × 10-6 m), �sv  is the scanning speed (2 m/s) and 

Δt is the acquisition time frame. We made the assumptions of no shadowing or masking 

effect (Barthe 2006, Mendez 2004). 

Therefore ΔN can be computed from FBRM measurements. 
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5.1.2 Estimation of supersaturation  

Supersaturation is the driving force upon which nucleation and growth kinetics 

depend. It is therefore a crucial variable to estimate. It is defined by: 

*C C CΔ = −      (52) 

where C is the concentration (kg solute/kg solvent) and C* is the solubility (kg solute/kg 

solvent). The solubility, C*, of paracetamol in ethanol solution has previously been 

determined (Gracin 2002), and its dependence on temperature T (K) is given by 

( ) ( )* 4 22.955 10 exp 2.179 10C T T− −= × ×    (53) 

Since the solution temperature is a function of time, the evolution of the solubility is also 

a function of time. When the temperature is ramped down, the time-dependence of the 

temperature is given by the dimensionally consistent equation: 

( ) 0T t T r t= −      (54) 

where r is the cooling rate , T0 is the initial temperature. 

The concentration of the solute in solution, C, in mass of solute/ mass of solvent 

is defined as: 

solute in solution initial c,crystallized

solvent solvent

m m m
C

M M
−

= =    (55) 

     ( ) ( )
b b

c,crystallized ,onecrystal ,onecrystal
1 1

= =
N N

i i i i
i i

m L m L V
= =

Δ Δ∑ ∑i iN Nρ        (56) 
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where Nb is the number of bins, ρ is the density (e.g. for paracetamol ρ = 1.293×103 

kg/m3, Granberg 2005) , Msolvent the mass of solvent in kg, minitial the mass of solute 

introduced in the system in kg, mc,crystallized the mass of solute crystallized in kg and ΔNi is 

the total number of crystals of characteristic size iL  in the crystallizer. The characteristic 

size is here defined as the equivalent diameter: that is, the diameter of a sphere having the 

same volume as the crystal. The number size population, ΔN, is related to the population 

density, n1, via Equation (51).  

     
Figure 25. Octahedral crystal (left: scheme – right: micrograph of actual crystal) 

 
 

The relationships between the measured crystal dimension and area and volume 

of the crystals are required for this analysis. For example, paracetamol crystals are 

assumed to be octahedral as shown in Figure 25, so that the characteristic length iL , 

which is the equivalent diameter, is related to the edge ai according to the relationship 

3
3

2 2 2i i ia L Lπ π
= =      (57) 

ai 
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Therefore the area and the volume of the octahedral can be expressed in term of 

iL , and the result substituted into an expression that can be used to estimate solute 

concentration: 

Area of one octahedron crystal of size iL : 

( )2
2 3

,one crystal 2 3 3i i iA a Lπ= =      (58) 

Volume of one octahedron crystal of size iL :  

3
3 3

,one crystal
2 4

3 3 2 6
i

i i i
LV a Lπ π⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

   (59) 

Therefore,  

( ) ( )
90 90

3
c,crystallized ,one crystal

1 1
=

6i i i i i i
i i

m L V L Lπρ ρ
= =

Δ = Δ∑ ∑N N   (60) 

The concentration, C, is thus expressed as a function of ΔN. 

( )
90

3
initial

solute in solution 1

solvent solvent

6 i i i
i

m L Lm
C

M M

πρ
=

− Δ
= =

∑ N
   (61) 

 

The initial mass, minitial, and the mass of the solvent, Msolvent,  are known.  

5.1.3 Estimation of growth kinetics: 

The supersaturation is related to the kinetics of the system, and its determination 

enables us to estimate the growth kinetics. A solute mass balance (Mullin 2001, 

Randolph 1971) gives: 

c,tot b

solvent solvent

A RdC G
dt M M

− = +     (62) 
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where Ac,tot is the total surface area, Rb the nucleation rate, G the growth kinetics.  

The experiment was designed to provide a period during which only growth 

occurred with cooling (see Section 6.2). Accordingly, during that period Equation (62) 

can be simplified by assuming that nucleation is negligible 

 c,tot bA G R�      (63) 

A model commonly found in the literature to define G is: 

g
gG k C= Δ     (64) 

so that 

c,tot
g

solvent

gAdC k C
dt M

− = Δ     (65) 

This assumption of negligible nucleation is assessed in the experiments using NT. 

As the number of counts does not increase, which means there are no new crystals being 

formed, and we witness only the growth of the present crystals.  

In order to evaluate kg and g, and to establish an expression for the growth 

kinetics, the evolution of C vs. time and the crystal surface area must be known. The total 

surface area, Ac,tot, which is a function of ΔN and iL , is determined according to the 

following equation: 

( ) ( ) ( )
90 902

23
c,tot ,one crystal

1 1
3i i i i i i

i i
A L A L Lπ

= =

= Δ = Δ∑ ∑N N   (66) 

Therefore, the evolution of the concentration, C, can be estimated from 

measurements of the chord-length density. The data time frame acquisition was set here 

such that measurements were taken every 10 s. Since such measurements have significant 
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noise, the distributions generated are noisy and need to be smoothed. Exponential filters 

are commonly used for noise reduction in the field of process control and are defined by 

(Lyons 2004)  

( )1 1 11i i iy x y −= θ + − θ      (67) 

where y is the filtered signal, x is the input signal and θ1 relates to the degree of 

smoothing. Usually 10 1< θ < ; the smaller θ1, the greater the smoothing. Here, a value of 

θ1 = 0.5 was adopted as it provides accurate smoothing without influencing the main 

features. The estimated concentration is therefore smoothed according to that filter in 

order to reduce the noise level. The supersaturation can thus be monitored through CLD 

measurements. 

By taking the logarithm of Equation (65), we obtain a linear equation involving g 

and kg  

( ) ( )c,tot
g

solvent

ln ln ln ln
AdC k g C

dt M
⎛ ⎞⎛ ⎞− = + + Δ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
   (68) 

The values of g and kg can be obtained from a plot of ( )solvent

c,tot

ln vs. lnMdC C
dt A

⎛ ⎞
− Δ⎜ ⎟⎜ ⎟

⎝ ⎠
. 

The slope is g and the intercept is kg. Thus, the full growth kinetic expression can be 

estimated. Here we assume that kg is independent of T over the range of temperature used 

in the experiments.  

5.1.4 Estimation of nucleation kinetics 

The nucleation rate, Rb (kg·s-1), is modeled as follows (Granberg 1999): 
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     (69) 

where γ is the surface energy, M the molecular mass (e.g. for paracetamol, 151.16 ×10-3 

kg·mol-1), ρ the density, k the boltzman constant (1.38×10-23 J·K-1), T the temperature (K), 

C the concentration (kg solute/ kg solvent), C*(T) the solubility (kg solute/ kg solvent) 

and kb is a nucleation constant. 

The interfacial tension is expressed through (Mersmann 1990) 

2/ 3
s

A *0.414 ln CkT N
M C
ργ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    (70) 

where NA is Avogadro’s constant (6.02×1023 mol-1), M is the molecular mass, and Cs is 

concentration of solute in the solid phase. The evolution of the mass can be evaluated as 

seen in the previous section (Equation (60)). Thus, the only parameter to fit in Equation 

(62), when Rb is replaced by its expression, is kb. The system kinetics can then be fully 

determined by the values of kb, kg and g. The procedure is summarized in Figure 26. 
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Figure 26. Methodology  
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5.2 Experimental set-up 

   
Figure 27. Experimental apparatus 

The experimental set up is shown in Figure 27. A 500 mL jacketed batch 

crystallizer was used. The mixing was realized through a 4-blade impeller rotating at a 

speed of 400 rpm; the crystallizer had 3 baffles and the FBRM probe, which served to 

enhance the mixing. The Reynolds number was estimated to be 8,900, and visual 

observations indicated good mixing. The batch reactor was linked to a programmable 

water bath. The temperature was measured and recorded through the use of a 

thermocouple inserted into the slurry, and linked to an Omega Daq 56 data acquisition 

system which offers a precision between 0.10 and 0.20 °C. Solvent loss was eliminated 

through the addition of a condenser on top of the crystallizer that condensed vapors of 

ethanol generated. A Lasentec Focused Beam Reflectance Measurement D600 was used 

to provide in-line monitoring of the evolution of the crystal population.  
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A “seeded” crystallization procedure was designed and implemented in order to 

isolate growth of the crystals in the batch cooling crystallization of paracetamol from an 

ethanol solution. The experimental conditions were designed to render nucleation 

negligible during a defined growth period. In a typical run, solute and solvent were added 

to the crystallizer, and the resulting solution was heated to 70 ºC, which insured complete 

dissolution of the crystals. A run began when the system cooling and the data acquisition 

were started. The initial cooling was at a pre-determined linear rate from 70 ºC to 48 ºC, 

during which time nucleation occurred to form the population of seed crystals. After 

allowing the system to stabilize at 48 ºC for 1 hour, a second cooling period, with a 

reduced cooling rate, was initiated with the intention of growing the existing crystalline 

population without nucleation of additional crystals. Once the system reached 10 ºC, the 

temperature was held constant.  

The goal of this procedure was to isolate growth of the crystals by rendering 

nucleation negligible during the second cooling step as illustrated in Figure 28. In other 

words, this cooling profile was designed to separate nucleation from growth, thus 

allowing the estimation of both kinetics. 

5.3 Experimental results 

5.3.1 Estimation of supersaturation  

Figure 28 shows how temperature and total chord counts were tracked in a typical 

run, which will be the focus of the discussion. After nucleation and a corresponding rapid 

increase in total chord counts, the temperature was maintained constant until steady state 

was achieved, which is indicated by a constant total number of chord counts. As the 
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cooling was resumed, the total number of chord counts remained constant, meaning there 

was no further significant nucleation and growth of the previously formed crystals could 

be followed.  

The solubility of paracetamol was estimated as a function of time using Equation 

(53). The FBRM raw data were used to estimate the population density according to the 

methodology detailed in Chapters 3 and 4. The conversion matrix was computed, as well 

as its eigenvalue decomposition. Due to the noise level and the assumed octahedral 

shape, and according to the procedure described in chapter 4, we use m´ = 70. This 

principal component analysis was then used to estimate n1 from the FBRM raw data and 

ΔN was estimated through Equation (51).  

The evolution of the normalized population density, n1, is shown in Figure 29 for 

a typical run. Nucleation occurred at t = 188 min, and here Figure 29 shows the length-

weighted population at different times after nucleation. As time increases, the crystals are 

growing, the peak shifts toward higher sizes, and the distribution becomes broader. As 

Mydlarz and Briedis (1992) showed in their work, the slight tails of the distributions 

noticed in Figure 29 can be caused by growth-rate dispersion. This effect is minimal and 

so as to keep the model fairly simple, the growth kinetics will be assumed to be size-

independent and without growth rate dispersion. 
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Having estimated n1 and NT, we were then able to compute the total surface area 

and the total volume of the crystals as a function of time. The evolution of the 

concentration, C, throughout the run was then estimated using Equation (61). As shown 

in Figure 30, the evolution of the concentration and the mass crystallized had opposite 

trends. As the system was cooled to the nucleation point, the solute concentration 

remained constant and there was no mass crystallized. As nucleation occurred, C 

decreased while mc,crystallized increased until a plateau was reached, which is indicative of a 

steady state. At this point, cooling was resumed and the crystals grew. As the 

concentration decreases, once again the mass of crystals increases until the steady state is 

reached. The system is then at equilibrium, the crystals are no longer growing. The model 

predicts an averaged total mc,crystallized of 0.061 kg, while the averaged mass collected at 

the end of the run was 0.059 kg. This difference (5.3 % maximum error) may be partly 

attributed to the fact that some solid is lost or accumulated on the wall of the vessel 

during the recovery process.  

Two sets of three runs were realized leading to similar results (Table 5). The first 

cooling rate on the first cooling step was set to be − 0.20 º C/min for both runs while the 

cooling rate on the second cooling step was different (Run 1: − 0.20 ºC/min and Run 2: − 

0.35 ºC/min). Similar nucleation events were noticed. The supersaturation was generated 

at a higher rate during Run 2 leading to steady state faster than in Run 1. 
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Table 5. Prediction of mc,crystallized vs. experimental results (in kg) 

 
mc,crystallized mc,recovered 

Experiment 1 0.059 0.056 
Experiment 2 0.058 0.056 

 
Run 1 

 Experiment 3 0.068 0.065 
Experiment 1 0.064 0.061 
Experiment 2 0.057 0.055 

 
Run 2 

 Experiment 3 0.062 0.059 
 

0.0

1.0 10-2

2.0 10-2

3.0 10-2

4.0 10-2

5.0 10-2

6.0 10-2

7.0 10-2

8.0 10-2

0.15

0.19

0.23

0.26

0.30

0.34

0.38

0.41

0.45

0 100 200 300 400 500

Mass

Concentration

M
as

s 
cr

ys
ta

lli
ze

d 
m

c,
cr

ys
ta

lli
ze

d(k
g)

C
oncentration, C

 (kg/kg)

Time (min)  

Figure 30. Evolution of the concentration and the mass crystallized (Run 1- Experiment 1) 



 91

5.3.2 Estimation of growth kinetics  

We now focus on the data from the second cooling step, which corresponds to the 

growth-only regime. This assumption is verified by observing that NT was constant 

during the second cooling step, as shown in Figure 28. Equation (68) was then used to 

obtain the growth kinetics of the system. The highest variations of the data from the 

general correlation are observed for low ΔC, which corresponds to the end of the run. 

This discrepancy can be explained by the fact that the system is close to equilibrium, 

denoted by a small variation of ΔC and low temperature, the growth of the crystal is 

therefore small. Our model assumes a temperature-independent kg, hence the slower 

growth of the crystal at low temperature was not taken into account leading to divergence 

in between the actual behavior and the modeled one.  
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The procedure highlighted in Section 5.1.3 was applied to two sets of three 

repetitive experiments with different cooling rates during the second cooling step (Run 1: 

− 0.20 ºC/min and Run 2: − 0.35 ºC/min). The results for Run 1 are shown in Figure 31. 

The results of Run 2 are similar and in a concern of graph clarity were not added to the 

graph. Fitting the data with Equation (68), over our considered range of temperature (10 – 

48 ºC), gave kg = 1.71 ×10-4 kg·m-2·s-1 (kg / kg solvent)-g with a 95% confidence interval 

of ± 4.41×10-5 kg·m-2·s-1 (kg / kg solvent)-g  and g = 1.98 with a 95 % confidence interval 

of ±0.04. The correlation is illustrated in Figure 31 as a solid line. Notice that all the 

experimental points are grouped around this general correlation. The results from each 

experiment are shown below in Table 6. The variation between each run is not significant 

for g and slight for kg as shown in Table 7. The modification of the cooling rate 

influences more kg which is a function of the temperature than g. The only difference 

between the two run is the cooling rate, which does not influence kg. The time needed to 

reach steady state is lower in Run 2, hence reducing the number of points used to obtain 

the correlation of data. This can be a source of slight variation observed in kg in between 

the runs. As shown in Table 7, the standard deviation within one run is comparable to the 

overall standard deviation for kg and for g. 

Table 6. Results for growth kinetics (kg is in kg·m-2·s-1 (kg / kg solvent)-g) 

 kg g 

Exp1 1.71×10-4 2.02 
Exp2 1.38×10-4 1.90 

 
Run1 

 Exp3 2.61×10-4 2.05 
Exp1 2.01×10-4 1.91 
Exp2 1.74×10-4 1.98 

 
Run2 

 Exp3 0.81×10-4 2.01 
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Table 7. Analysis of the results 

Mean Standard deviation 

 kg g kg g 

Run 1 1.90×10-4 1.99 6.37×10-5 0.08 

Run 2 1.52×10-4 1.97 6.30×10-5 0.05 

Overall 1.71×10-4 1.98 6.03×10-5 0.06 
 

 

A limited amount of work has been published on the growth rate of paracetamol 

in various solvents. To provide some insight on the evolution of the growth kinetics with 

different solvent the results of those studies is presented here. Granberg et al. (1999) 

established the growth kinetics of paracetamol in acetone-water mixtures at 16 ºC, and 

found a g varying from 1.7 to 1.2 and kg from 6×10-5 to 25×10-5 kg·m-2·s-1 (kg / kg 

solvent)-g depending upon the composition of the solvent. They used electrosensing zone 

measurement, sieving and microscopic observations (Granberg 1999). Granberg and co-

workers later extended their study to water – acetone – toluene mixtures. They obtained a 

value of g ~ 1.7 and kg ~ 0.35×10-5 kg·m-2·s-1 (kg / kg solvent)-g for a solvent of 3 mass% 

water, 92.15 mass% acetone and 4.85 mass% toluene at a temperature of 16 ºC (Granberg 

2005). Additional studies were also performed by Mazzotti and co-workers who obtained 

a value of g = 1.9 and kg = 21.0 exp(−4.16×107/RT) m·s-1(m3·kmol-1)g for paracetamol 

growth in ethanolic solutions studied through ATR-FTIR and densitometry techniques 

(Worlitchek 2004).  This work was used to extract the activation energy, and we utilize 

this value later in this chapter. 
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Other groups focused on the face growth kinetics of paracetamol in different 

solvents. Shekunov et al. (1996, 1997) studied the face growth kinetics of paracetamol in 

ethanolic solutions using interferometric techniques at two temperatures 3 ºC and 47 ºC. 

They focused on the growth mechanism of the different crystal faces. It was concluded 

that the crystal growth, as well as its quality, were strongly dependant on the temperature; 

growth rates ranged from G =10-7 to 10-8 kg·m-2·s-1. Finnie et al. (1996, 1999) studied the 

face growth rate in aqueous solutions at 30 ºC through optical microscopy and X-Ray 

topography techniques. Their work investigates how the crystal growth conditions can be 

exploited in order to modify the physical properties of the crystal. 

From the cited studies, it can be expected to find a value of g > 1. The results 

obtained here are not far from those reported in those previous studies. We now introduce 

we introduce the temperature dependence of kg in the expression of the growth kinetic. 

The value obtained experimentally will be attributed to the average temperature over the 

considered range. Hence kg (29 ºC) = 1.71 ×10-4 kg·m-2·s-1 (kg / kg solvent)-g. An 

Arrhenius law is then used, the activation energy Ea = 41.6 kJ/mol (Worlitchek 2004) and 

kg,0 = 2.68×103 kg·m-2·s-1 (kg / kg solvent)-g. The evolution of kg with the temperature is 

shown in Figure 32. The growth kinetics are thus expressed: 

a
g,0 exp gEG k C

RT
⎛ ⎞= − Δ⎜ ⎟
⎝ ⎠

    (71) 
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When using this expression to verify the fit in the results for Experience 1 Run 1, 

we obtain the results in Figure 33. We can see that the incorporation of the temperature 

dependence in kg provide a better correlation towards higher ΔC. The difference noticed 

for smaller ΔC is still present when using kg(T). The results for Experiences 2 and 3 are 

similar. 
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5.3.3 Estimation of nucleation kinetics 

In order to establish the nucleation kinetics, we now apply the previously detailed 

methodology from Section 5.1. In Figure 34, the experimental nucleation rate Rb, is 

calculated from Equation (62) and compared to the fitted results from equation (69). We 

can see the nucleation event clearly identified by a sharp peak at t = 188 min. Through 

experimental fitting with Equation (69) and assuming no growth, we estimate kb = 3.39 

×1010 kg·s-1 with a 95 % confidence interval of ± 3.42×109 kg·s-1. The interfacial tension, 

γ, was also computed through Mersmann formula (Equation (70)) and ranged from 53 to 

56 mJ·m-2 over the considered range of temperature. Overall the experimental data are 

accurately represented by the model. The nucleation event is clearly indicated by a sharp 

peak. Note that there is no secondary nucleation and that the supersaturation is 

exclusively dissipated through growth phenomenon once the nucleation event is over. 
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The same procedure was applied to two sets of three experiments; the results are 

shown below in Table 8. The average and the standard deviation do not vary significantly 

between the two runs as shown in Table 5, the results are reproducible.  

 

Table 8. Results for nucleation kinetics (kb is in kg·s-1) 

 kb 

Exp 1 3.37 ×1010

Exp 2 4.00 ×1010
 

Run 1 
 Exp 3 2.98 ×1010

Exp 1 2.78×1010

Exp 2 3.41×1010
 

Run 2 
 Exp 3 3.82×1010

 
 
 

Table 9. Analysis of the results 

Mean Standard 
Deviation 

 kb kb 
Run 1 3.45×1010 5.15×109 
Run 2 3.34×1010 5.24×109 

Overall 3.39×1010 4.69×109 
 
 

Earlier, we made the assumption of no nucleation on the second cooling step. This 

will now be verified. To do so, we computed the growth and the nucleation at two 

different times, t1 = 188 min and t2 = 300 min. We estimate at nucleation: Rb(t1) = 

1.14×10-4 kg·s-1 and Ac,totG(t1) =2.41×10-9 kg·s-1 and during the second cooling step: 

Rb(t2) =1.10×10-10 kg·s-1 and Ac,totG(t2) = 1.16×10-7 kg·s-1. Hence we have, at nucleation 

Rb >> Ac,totG and during the second cooling step Ac,totG >> Rb. The assumption made 
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during the second cooling step is justified, nucleation is negligible. This corroborates the 

assumption made from the evolution of NT. 

Little work has been published on the nucleation kinetics of paracetamol, none 

providing trustworthy numerical data. Nagy et al. (Nagy 2008) from Braatz’s group used 

metastable zone width experiments combined with three possible methodologies to 

determine the kinetics of nucleation of paracetamol in water. Their work reached the 

conclusion that important errors were introduced due to the assumptions made and the 

model used. As a result, the precision and values found for the nucleation kinetics varied 

greatly with the method employed. Granberg and co-workers (2001) studied the primary 

nucleation of paracetamol in acetone-water mixture through the study of the induction 

times and focused their work on the interfacial energy, an increase in solubility, 

decreased percentage of water in the solvent, leads to a decreasing interfacial energy, and 

increased nucleation. Mullin provides a general order of magnitude for the nucleation 

kinetic coefficient of 103 to 105 cm-3·s-1 for heterogeneous crystallization and 1025 to 1030 

cm-3·s-1 for homogeneous nucleation (Mullin 2001). In this work we have 3.96×1018  

cm-3·s-1, this tends to indicate homogeneous nucleation. 

 

5.3.4. Comparison of the model to experimental data 

In order to verify the accuracy of the model describing the growth and nucleation 

kinetics, the evolution of the concentration, C, was computed using Equation (62). We 

use the value of Ac,tot obtained experimentally through Equation (66) and the values for 

the kinetics obtained in the previous sections. The mass crystallized, mc,crystallized, is also 

deduced from the concentration through Equation (55). The evolution versus time of both 
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is plotted in Figure 35. It can be noticed that the value of the concentration is slightly 

overestimated while as a consequence the mass crystallized is underestimated but the 

general trend is well predicted. The average error on the concentration is 4.07 % with a 

maximum at 8.64 % while the average error on the mass crystallized is 3.22 % with a 

maximum at 7.42 %. The data fitting process used to estimate the kinetics, as described in 

the previous section, does not lead to a loss in information.  
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Figure 35. Modeled vs. experimental evolution of C and mc,crystallized 
 

 

To summarize, the FBRM technology allows on-line monitoring of the chord-

length density which leads to an estimation of the evolution of n1, which was then used to 
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estimate the number population density ΔN. The supersaturation, ΔC, was then estimated 

and used to calculate growth and primary nucleation kinetics for the considered system.  

The results from the experiments in the present chapter show how a seeded 

crystallization can be implemented in order to extract the growth kinetics of the system. 

Knowledge of the growth and primary nucleation kinetics is essential to solve the 

population balance, which can lead to a better control of the process. Those results can be 

used to enable the resolution of the population balance so as to establish a predictive 

model based on growth and nucleation rates of the studied system. 

Usually, several costly instruments are needed to regroup the data necessary to 

estimate the kinetics of a system, specifically supersaturation. The FBRM provides the 

advantage of computing the supersaturation of a solution using only one instrument, 

while also providing on-line, in-situ measurements of the evolution of the population. 
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CHAPTER 6 

POPULATION BALANCE 

 
Population balances have been used to model the evolution of particle populations 

in a wide range of processes, including crystallization. Since they cannot always be 

solved analytically, several groups have investigated numerical methodologies to solve 

the equations. For example, Ramkrishna and co-workers (1996, 1997, 2000 and 2002) 

used a refined Galerkin method on finite elements to obtain the solution of population 

balance equations for precipitation processes. Gunawan et al. (2004) proposed to adapt 

the high-resolution finite-volume methods developed for compressible gas dynamics to 

solve multidimensional population balance models. Other groups, such as Qamar and co-

workers (2007, 2008) and Lim and co-workers (2002), based their approach on 

combining a high resolution spatial discretization method and a modified method of 

characteristics to evaluate the solution. In the present work, we will compare a finite-

difference method to the moment transformation method. 

Once the system kinetics are established (see Chapter 5), fully modeling the 

system can be done by solving the population balance. A population balance begins with 

the general statement:  

Accumulation = Input - Output + Net Generation     (72) 
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Assuming the active volume of a well-mixed crystallizer is constant, the 

population balance can be written explicitly as (Randolph and Larson 1971, Mullin 

2001): 

( )
p p

k k

k

Gn n Qn D - B -
t L V

∂∂
+ + =

∂ ∂ ∑     (73) 

where G is the growth rate, dL
dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

, Dp is a particle death function, Bp is a particle birth 

function, nk is the volume-weighted population density for the kth stream, Qk is the 

volumetric flow rate for the kth stream, and V is the active crystallizer volume. Equation 

(73) can be further simplified. For the simple case examined here, i.e. batch cooling 

crystallization with no fines removal, Qk = 0. Breakage and agglomeration will be 

neglected so that the possibility of particles appearing (birth function Bp) or disappearing 

(death function Dp) in the suspension due to those phenomena is assume negligible: Bp = 

0 and Dp = 0. Equation (73) becomes: 

∂ ∂
∂ ∂
n n+G = 0
t L

     (74) 

with the initial condition: 

• n(0,L) = 0    which means that at time t = 0, the solution is clear 

• n(t,0) = n0 = Rb / G where n0 is the population density of nuclei, i.e. 

crystals at L = 0. 

The growth and nucleation kinetics are dependent upon the supersaturation. 

Therefore solving the population balance shown in Equation (74) requires solving a 

coupled system of partial differential equations describing the population balance and 

solute mass.  The kinetics determined in the previous chapter are used here but in another 
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system of units. Rb is in number·m-3·s-1 and G is in m·s-1. Rb was previously established in 

both unit system, the relationship between the mass growth rate and the linear one is as 

follows: 

1 2 1a

v

m s kg m s
3

kG G
k ρ

− − −⎡ ⎤ ⎡ ⎤⋅ = ⋅ ⋅⎣ ⎦ ⎣ ⎦     (75) 

Where ka is the surface shape factor, kv the volumetric shape factor and ρ the density. 

6.1 Methodology 

 
The differential equations describing the evolution of the concentration, C, and the 

population density, n, are coupled and, therefore, need to be solved simultaneously 

(Randolph and Larson 1971). 

 
∂ ∂
∂ ∂
n n+G = 0
t L

     (74) 

 
2

a 0

1
2

dC k G nL dL
dt M

ρ ∞
= − ∫     (76) 

 

where ka is the surface area shape factor which serves as a proportionality constant 

between particle size and surface area (Lachman, 1986). For the paracetamol crystals 

considered here, ka is given by: 

( )22 3
octahedron aArea 3k L Lπ= =     (77) 

where L is the equivalent diameter. Hence, ka= ( )233 π  . The initial and boundary 

conditions are:  

• n(0,L) = 0 

• n(t,0) = n0 = Rb / G 
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• C(t = 0) = C0 

The growth and nucleation kinetics are defined in Chapter 5: 

• a
g,0 exp gEG k C

RT
⎛ ⎞= − Δ⎜ ⎟
⎝ ⎠

 

• 
( )

( )

2
3

b b
3 3 2

16

3 *

M
R k exp

Ck T ln
C

πγ ρ
⎛ ⎞

−⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where kg, g and kb are kinetic parameters as defined in Chapter 5, M is the molecular 

mass (for paracetamol, M = 151.16 g/mol), γ is the surface tension (see Chapter 5), ρ is 

the density, T is temperature in K, k is the Boltzman constant, C is solute concentration, 

and C* is the solute solubility.  

There are many ways to solve this system of differential equations. Here, we will 

first implement a finite-difference approximation of the equation, and secondly we will 

use the moments methodology described by Randolph and Larson (1971). Finally, the 

accuracy of both methods are compared to one another and to the data collected through 

the FBRM. 

6.1.1 Finite-difference resolution 

When discretized, Equations (74) and (76) can be written 

( ) ( ) ( ) ( ) ( )1 1 0j i j i j i j i
i

j

L ,t L ,t L ,t L ,t
G t

t L
+ −− −

+ =
Δ Δ

n n n n
  (78) 

( ) ( ) ( ) ( )1 2
a

1

1
2

i i
i j i j

j

C t C t
k G t L ,t L L

t M

∞
+

=

− ρ
= − Δ

Δ ∑n    (79) 

where Δt and ΔLj the step size relative to time and size. The system of equations can be 

rewritten to obtain n( jL , ti+1) and C(ti+1) explicitly. 
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( ) ( ) ( ) ( )( ) ( ) ( )1
1 g

g j i j i*
j i j i i i

j

L ,t L ,t
L ,t L ,t t k C t C t

L
−

+

⎛ ⎞−
⎜ ⎟= − Δ −
⎜ ⎟Δ⎝ ⎠

n n
n n   (80) 

( ) ( ) ( ) ( )( ) ( ) 2
1 a g

1

1
2

g*
i i i i j i j

j

C t C t t k k C t C t L ,t L L
M

∞

+
=

⎛ ⎞ρ
= + Δ − − Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑n    (81) 

The initial and boundary conditions are then defined by (Lim 2002, Costa 2007) 

• n(t1,Lj) = 0 

• n(ti, L1) = n0 = Rb(ti) / (G(ti) / ΔL1) 

• C(t1) = C0 

The main difficulty in this Runge-Kutta method of order 1 is to find a sufficiently small 

step size. We use Δt = 10 s and ΔL = 0.1 μm in obtaining the results discussed in Section 

6.2. Those step sizes were determined through trial and error. It is essential for the step 

size to be small enough so it doesn’t influence the results of the simulation but still high 

enough so the computation time is reasonable. 

6.1.2 Moments transformation 

Randolph and Larson (1971) and Hulburt and Kartz (1964) were among the first 

to investigate the applications of population balance models to crystallization. Randolph 

and Larson (1971) proposed using the moments of the distribution in solving the 

population balance. Moments were defined as: 

0

j
jm = nL dL

∞

∫       (82) 

where mj is the jth moment of the population density function. Since we are assuming that 

the growth rate G is independent of size, Equation (74) leads to: 

0

0j n nL G dL
t L

∞ ∂ ∂⎡ ⎤+ =⎢ ⎥∂ ∂⎣ ⎦∫     (83) 
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0 0 0

0jj j jdmn n nL dL L G dL L G dL
t L dt L

∞ ∞ ∞∂ ∂ ∂
+ = + =

∂ ∂ ∂∫ ∫ ∫    (84) 

0

j nL G dL
L

∞ ∂
∂∫  can be integrated by parts (Randolph and Larson, 1971) to give 

b 1
0

0j j
j

nL G dL R jGm
L

∞

−
∂

= − −
∂∫ i     (85) 

b -10 •j j
j

dm
R jGm

dt
= +  , j = 0…jn   (86) 

where Rb is the nucleation rate (number flux generated at L=0). Thus resolving the system 

described by Equations (74) and (76) is equivalent to solving the following ODE system: 

b -10 •j j
j

dm
R jGm

dt
= +  for j = 0…jn   (86) 

( )a g 2
1
2

g*dC k k C C m
dt M

ρ
= − −        (76) 

The initial and boundary conditions are: 

• mj(0) = 0, the initial solution is clear 

• C(0) = C0 

The population density is restored according to the principle given by Hulburt and Kartz 

(1964): 
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∑   (87) 

where the parameters λa and a are functions of the moments (up to m2) and are equal to: 

1

0

ma
m

= ,  and 
2

a
22

0

a
m am

λ =
⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, the nth order Laguerre polynomial ln
(λ) and the nth 

coefficient cn are expressed by: 
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λa is not an integer, therefore the factorial of the non integer terms ( )a 1 !n j+ − −λ  and 

( )a 1 !−λ  are defined to be the factorial of the closest integer. The term (n+λa-1-j) was 

rounded to the closest integer before its factorial product was considered. 

The main difficulty in using this methodology is to define the number of moments 

jn, that are needed efficiently to restore the population density. It is interesting to note that 

when a Gamma distribution is considered, the leading terms in Equation (87) offer an 

exact answer, therefore only a and λa needs to be determined and jn = 2. But as you need 

to implement higher order corrections through the Laguerre polynomial coefficient, 

oscillations are introduced, worsening the approximation, and thus the delicacy of the 

restoration process. The results are shown in Section 6.2. 
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6.2 Results 

The experimental apparatus is similar to the one described in Chapter 5, operated 

with a linear cooling profile.  The kinetics relationship developed in Chapter 5 are used to 

model the system, and the methodologies described in Section 5.1 were used to compute 

the evolution of the concentration versus time. The concentrations simulated by finite 

difference and by the method of moments were compared to values estimated according 

to the procedure described in Chapter 5. 
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Figure 36. Experimental concentration vs. simulated one. 
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The results are shown in Figure 36, for a cooling batch crystallization of 

paracetamol from 70 ºC to 10 ºC at a rate of − 0.20 ºC/min. The simulated concentrations 

compare favorably to that estimated from FBRM data (i.e. using the method of Chapter 

5). However, with an average error of 8.5 %, the calculations lacks precision.. The values 

predicted by the moments model (jn = 8) and the finite difference method are in 

agreement (with a maximum error of 1.25%). 

The same procedure computes the evolution of n(L,t) in parallel, and the results are 

shown in Figure 37. The step sizes for the calculations were 10 s and 0.1 μm, and 8 

moments were used to reconstruct n(L,t) and C(t). The results obtained with the two 

methods (finite difference and moments transformation) show similarities. Their 

estimation of C(t) and n(L,t) present less than 2.5% difference. It was noticed that using 

higher order moments (larger jn) led to higher error as oscillations were seen and 

worsened as jn increased to a point where the approximation becomes useless. 

Nonetheless, through trials and error, it was found that using up to 8 moments led to a 

reasonable approximation of the population density. For the finite difference method, the 

time step size was chosen to be 10 s. The length step size was chosen as small as possible 

so as to provide a reasonable approximation of the population density but high enough to 

limit the computation time, ΔL = 0.1 μm. Similar results were obtained for time step sizes 

ranging from 5 s - 30 s for time and from 0.1 - 1 μm for length. 

In Figure 37, the first peak represents a sudden increase in the small sizes of the 

population density as nucleation occurs. As time increases, those crystals grow, hence 

generating the population density to broaden and shift towards higher size ranges. A 

small time-lag is noticed in between the two methods, this is due to the fact that we chose 
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to plot the population density every 20 minutes in order to gain clarity in the graph. If 

plotted at smaller interval (Figure 38), both methods are in agreement. The time-lag, ε, 

noted in Figure 37 is due to the fact that we plot n(L,t) for the moment transformation 

method and n(L,t+ε) for the finite difference method. By plotting it every 20 min, we 

have a clearer graph but the maximum n(L,t) reached seems underestimated in the finite 

difference method when compared to the moments methods. Figure 38 shows a plot 

every 2 minutes of n(L,t), as we can see the maximum reached is within 0.15 % for the 

two methods. The results obtained through both methods are close, and it is interesting to 

note that the time interval in between two plotted representations of n(L,t) has a large 

influence on what is being seen. 
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Figure 37. Simulation of the evolution of n(L,t) shown every 20 min (top graph: moments method; 
bottom graph: finite-difference(F.D.)) 
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Figure 38. Simulation of the evolution of n(L,t) shown every 2 min (top graph: moments method; 

bottom graph: finite-difference) 
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The same behavior, in other words, nucleation then growth, is observed in the 

actual experiments. In Figure 39, the population density was extracted from experiments 

using the FBRM (cooling rate of − 0.20 ºC/min), and was compared to the one predicted 

by the model. Considering that both methodologies give the same results, we here decide 

to use the moments method. t0 is defined as the nucleation time, three different times after 

nucleation were considered: t1 = 20 min, t2 = 100 min and t3 = 200 min. A parallel 

evolution in between model and simulation is observed, nonetheless the population 

density, even though close, do not agree. This is due to the assumptions made in 

establishing the model and the kinetics. As a reminder, G was assumed to be size-

independent; we assumed no secondary nucleation, no agglomeration and no breakage. 

The results predicted provide a good guideline as to the evolution of the process through 

n(L,t) and the evolution of the concentration, C, in the slurry. Initially, the width of the 

distribution is narrower in the model than in the experimental results while later on it 

becomes comparable. We also note that for the model, the growth is constant and the 

peak evolves towards higher sizes. For the experiment we can see that it seems to follow 

the trend of the model but a slight difference is observed. This can be explained by the 

hypothesis we made regarding the modeling of the kinetics. We neglected possible 

breakage or agglomeration of the crystals. The combination of these hypotheses 

contributes to the differences seen in between predicted and actual evolution of the 

density. 
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Figure 39. Comparison simulated vs. experimental n(L,t) (t1=20min, t2=100 min and t3= 200min) 

 

An additional simulation of the run described in Chapter 5 is provided in Appendix 

D. The results are similar to the one described in this chapter. 

Solving the population balance leads to the computation of the evolution of the 

population density versus time and the development of a predictive model. The predicted 

evolution was compared to the actual one, the model provides an accurate trend but with 

still some imprecision in the numbers. This error is due partly to the hypothesis made to 
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establish the growth and nucleation kinetics, to the fact that we neglected secondary 

mechanism and finally the error is also due to the method used to solve the population 

balance model such as the step size chosen in the finite difference method and the 

number of moments used in the methodology using the moments. Solving the population 

model provides the user with a predictive model on the evolution of n(L,t). Such a model 

can lead to a better control of the process. Depending on the process, it might be essential 

to add a breakage and/or an agglomeration term in the population balance to provide 

better estimation of the process. 
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CHAPTER 7 

OBSERVATION OF POLYMORPHIC TRANSITION 

 

As polymorphic transformation has a large impact on pharmaceutical processes, 

monitoring this phenomenon constitute an essential complement to the investigation of 

the growth and nucleation phenomenon when it comes to fully understanding the 

crystallization process of a given system. In the present chapter, batch cooling 

crystallization of paracetamol from ethanol solutions is used as a model system for 

exploring the utility of Focused Beam Reflectance Measurement (FBRM) data in 

detection of the formation and transformations of polymorphs in-situ.  

Polymorphism leads to significant variations in the physical properties of such 

crystals, as seen in Chapter 2. A slight modification in the crystallization process can 

produce a different polymorph, therefore, proficient control of such processes is 

necessary to ensure the quality and conformity of the end product. Consequently, being 

able to detect a polymorphic transformation in-situ would have great value (O’Sullivan et 

al. 2003, 2005). 

Besides direct visual or microscopic observation, there is no technique to observe 

crystal shape. Since identification of polymorphism can be a challenge, even with off-line 

measurement techniques involving XRD, IR and Raman spectroscopy, NMR, and 

thermal analysis, it is no surprise that direct in-process observation of polymorphic 

transitions has been elusive. However, since a polymorphic transformation often is 

accompanied by a modification in crystal habit or shape, (Brittain 1999) use of this 

variable as an indicator of polymorphism may be feasible. In such instances visual or 
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microscopic observations, using a technique like Particle Vision Measurement (PVM) 

(Lasentec®), may hold promise, but these lack quantitative rigor. This chapter investigate 

the possibility to utilize the FBRM beyond its intended purpose, which is on-line 

monitoring of the evolution of a crystalline population, by extracting information about 

crystal shape and polymorphic transitions. FBRM measurements are highly dependant on 

the shape of the crystal, which means that it is reasonable to assume that a change in 

crystal shape can be monitored.  

The FBRM has been used in coordination with PVM and Raman spectroscopy to 

investigate the polymorphic transformation of D-Mannitol (O’Sullivan et al. 2003). 

Similar studies have also been run on the transformation of L-glutamic acid with 

additional information on the concentrations profile provided by attenuated total 

reflection Fourier transform infrared spectroscopy (ATR-FTIR) (Schöll et al. 2006). 

Based on these studies, the structurally sensitive information given by the Raman 

spectroscopy appears to be necessary and the FBRM was simply used to monitor the 

evolution of the total chord counts. In contrast, the present study illustrates how the 

FBRM, combined with a model, can be used to gain insight on the polymorphic transition 

and track a change in crystal shape without relying on additional instruments. This 

provides the advantages of less complex experimental protocol and the use of fewer 

expensive instruments. 

The present work used batch cooling crystallization of paracetamol from ethanol 

solutions as a model system for exploring the utility of FBRM data in detection of the 

polymorphic transition. As a reminder, paracetamol (acetaminophen) is known to exist in 

three polymorphic forms (Beyer 2001). Note that, the shape of paracetamol crystals 
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change with transition from Form II (needles) to Form I (octahedral), and therefore 

fulfills the proposed requirement to use FBRM to detect a polymorphic transition. 

As Form II crystals undergo plastic deformation during compression, they are 

easily compressed into tablets, and there have been efforts to synthesize and retain this 

particular polymorph (DiMartino et al. 1996, Sun and Grant 2001, Nichols and Frampton 

1998). It has been shown that under certain experimental conditions, Form II can be 

produced at a lab scale, but the crystals have to be harvested relatively early after 

nucleation to prevent solvent-mediated transformation, thus strongly limiting their growth 

(Al-Zoubi et al. 2002, DiMartino et al. 1996, Nichols and Frampton 1998). A better 

understanding of this transition, enabled by in-situ FBRM measurements, could aid in 

developing a more efficient process for making Form II paracetamol. 

 

7.1 Influence of crystal shape  

As seen in Chapter 3, the relationship between the length-weighted population density n1 

and the chord-length density q is defined by 

1=q nΨ ,      (90) 

where Ψ is a conversion matrix relating the two vectors, n1 and q, which describe the 

densities. With the determined matrix Ψ, which is a function of the shape of the crystals, 

the CLD corresponding to a specific crystal population density can be estimated.  

The two polymorphic forms of paracetamol considered here have different crystal 

shapes: Form I crystals are octahedral and Form II crystals are needle-like. Accordingly, 

it is anticipated that two identical population densities, each comprised of one of the 

polymorphs, would lead to greatly different chord-length densities, and FBRM 
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measurements of the chord-length densities should have significantly different 

characteristics. This outcome would provide a tool for observing a transition from one 

form to another with the FBRM.  

Three crystal populations, one from each considered shape, were analyzed to 

show more clearly the effect of shape on chord-length distribution. To make the 

outcomes comparable, all particles were specified to have the same volume and the 

dimensions for each category were defined in terms of a single variable: the edge of an 

octahedron and the short edge of a slab and of a needle. A chord-length distribution was 

calculated for each shape assuming a single crystal size. The volume of the crystal was 

kept constant, 3.456×10-11 m3, in going from one shape to another and the dimensions of 

the crystals were derived after first defining the aspect ratio for a slab as 5:1 and for a 

needle as 20:1. Therefore, for an octahedron, the edge was 418.53 µm; for a slab, the base 

edge was 190.49 µm; for a needle, the base edge was 120 µm.  

The chord-length density q for each of the crystal shapes was calculated as 

previously described, and the results are shown in Figures 2 through 4. Clearly, q has a 

functional dependence on shape, and the difference between octahedrons and needles is 

significant. Two important changes in the distribution are the standard deviation, which is 

a measure of spread, and the skewness, which is an indication of a lack of symmetry; in 

going from octahedral to slab to needle, the standard deviation decreases and the 

skewness increases as shown in Table 1. We use the definition 

3Skewness = 3μ
σ

     (91) 

where μ3 is the third standardized moment, and σ is the standard deviation of the 

distribution q. 
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 (a = b = 120 µm and c = 20 a) 
 
 

Table 10. Characteristics of the chord-length densities 
 Octahedron Slab Needle 

L mean 368.3 216.8 158.7 

σ2 9247.7 28236.7 22009.3 

Skewness -1.22 2.04 2.74 

 

These results show that a change in crystal shape, while holding crystal volume 

constant, leads to significantly different chord-length densities. The calculated density 

functions were different in form as well as in the location of characteristic maxima. It 

may therefore be expected that the polymorphic transition from a population of slabs to a 

population of octahedrons would be marked by a change in the overall observed chord-

length density. This was examined by estimating chord-length densities for each of three 

c

a

 b 



 125

different crystal shapes (octahedrons, slabs, and needles) comprising the crystals in a 

fixed population density, which in this case was defined as following a gamma 

distribution. The gamma distribution chosen as an example is defined by:  

( ) ( )
1

1

iL-
-

i i
eL L

θ
β

βγ
β θ

=
Γ

n     (92) 

( ) ( )!Γ β = β - 1      (93) 

 

where β is a shape factor, θ a scale parameter and γ a normalizing coefficient. In the 

present work, the parameters were selected so that Lmode = 400 μm (β = 9, θ = 0.5 and  

γ = 0.01). L is the characteristic size of the crystal, here, it is the equivalent diameter. 

The resulting q for the three shapes are shown in Figure 43. The evolution of the 

standard deviation and the skewness show important changes in the distribution; in going 

from octahedral to slab to needle, the standard deviation decreases by a factor of 2.5 and 

the skewness increases by a factor of 10.  

 Like the results with a single crystal size, these outcomes are a further indication 

of promise in using FBRM measurements to observe transitions from one crystal shape to 

another. That promise is especially significant when the change in shape is from 

octahedral to needle, and therefore the transition of paracetamol from Form I to Form II 

is a good test case. 
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Figure 43. Overall chord length densities for the same population density (gamma distribution) but 

for different crystals shapes 
 

Table 11.  Characteristics of the chord-length densities 
 Octahedron Slab Needle 

Lmean 326.6 234.0 168.2 

σ2 18081.5 31281.1 23631.1 

Skewness 0.39 1.71 2.41 

 

7.2 Experimental protocol 

The primary unit was the same as the one described in Chapter 5. In a typical run, 

the solute and solvent (~34 wt % paracetamol, ~66 wt % solvent) were added to the 

crystallizer and the resulting solution was heated to 70 ºC, which insured complete 

dissolution of the crystals. Different solvents were used in the experiments and these will 
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be described later in this chapter, under the experimental results section. The data 

acquisition was started and the crystallizer contents were cooled at a pre-determined 

linear rate from 70 ºC to 5 ºC. The system was held at 5 ºC until equilibrium between the 

solution and the generated crystals was reached. Six runs were done at each set of 

conditions, which demonstrated that the results were reproducible. Three of them were 

used to monitor the evolution of the chord counts and were reproducible within 7 %, 

while the other three were used for sampling so the evolution of the chord counts was not 

disturbed by the sampling process. 

To determine which polymorphic form was in the system, samples of the crystals 

were taken at representative times after nucleation, which was identified by a sudden 

increase in the chord counts detected by the FBRM as seen in Figure 44. Samples were 

taken until steady state was achieved. The collected crystals were deposited immediately 

onto a thin microscope slide and examined with an optical microscope. 
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Figure 44. Evolution of the total number of chord counts and temperature vs. time for crystallization 

of paracetamol from ethanol at a cooling rate of  – 0.10 °C/min. 
 

7.3 Experimental results 

Initial experiments were performed using pure ethanol as a solvent. Cooling was 

at a rate of – 0.10 ºC/min, and the general procedure followed was as described above. 

Figure 45 shows the evolution of chord counts in several size ranges for a run in which 

samples were taken at the indicated times. Nucleation was identified through a rapid 

increase in chord counts, and steady state was defined to have been reached when the 

chord counts became constant. Photomicrographs of the crystal samples, shown in Figure 

46, were taken during three stages: (b) at nucleation, (c) during growth of the crystals and 

(d) when steady state was reached. None of these show evidence of a polymorphic 

transition; only the octahedral shape of Form I was seen from the point of nucleation 

Nucleation
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through steady state. Another photomicrograph (a) was taken before nucleation to verify 

the absence of crystals. 
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Figure 46. Photomicrographs of octahedral crystal samples taken at times indicated in Figure 45. 

 

Further experiments established, that both Forms I and II were nucleated upon 

batch cooling of a paracetamol-ethanol solution at a cooling rate – 0.50 ºC/min. This was 

established through observation of the corresponding micrographs. Form II disappeared 

shortly after nucleation as it underwent what is thought to have been a solution-mediated 

transformation, as identified by Al-Zoubi and co-workers (Al-Zoubi, 2002), and left an 

end-product that was uniformly Form I.  

In order to facilitate observation of a clear polymorphic transition, the 

experimental conditions were slightly altered to favor the formation of the kinetic product 

(Form II). This was done, as suggested by Nichols and Frampton (1998), by modification 

of the solvent (ethanol + 5 % methanol instead of pure ethanol) and higher cooling rate (–

1.0 ºC/min). Methanol was added to increase the solubility of the paracetamol-solvent 

a) b) 

c) d) 
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system, to favor the nucleation of Form II. The goal was to nucleate mainly Form II, 

which should provide a clearer view of the transition from Form II to Form I. Chord 

counts were tracked for such a run and are shown in Figure 47. Also shown on the figure 

are the times at which samples were taken for microscopic examination. Again, the onset 

of nucleation is shown clearly, but unlike the previous experiments, the chord counts in 

the smaller bins drops significantly shortly after nucleation, before finally increasing 

again and then becoming constant. The evidence to be presented indicates that this 

behavior reflects a transition in the crystal morphology as it goes from Form II 

(manifested in needle-like crystals) to Form I (octahedral crystals).  
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Figure 48. Photomicrographs of paracetamol crystals in samples taken as indicated in Figure 47.  

(a) 

(c)

(b)

a) b) 

c) 
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Photomicrographs of samples of the crystal population at various times are shown 

Figure 48. Figure 48(a) was taken shortly after nucleation; the crystals are seen to be of a 

needle-like shape, indicating the nucleation of Form II crystals. Several minutes later, as 

shown in Figure 48(b), octahedral and needle-like crystals are observed, indicating the 

partial transition from Form II (orthorhombic, needle-like crystals) to Form I 

(monoclinic, octahedral crystals). In 10(c), which is of a sample taken at equilibrium, 

only octahedral crystals are visible, indicating that Form II crystals have disappeared 

completely and the final product is uniformly Form I. As noted in Figure 47, the 

polymorphic transformation was accompanied by a decrease in counts of smaller chords, 

and it is postulated that the change in crystal habit caused this decrease. By going from 

needles to octahedrons there were a reduced number of small chords detected; this feature 

was attributed to the change in crystal habit. 

Figures 11 and 12 show chord-length density plots for the two runs described 

above: that is, without and with polymorphic transition. Differences in the shape of the 

distribution as well as in the evolution with time are clear. Consider first the chord-length 

densities soon after nucleation in the two systems. In Figure 11 only Form I is nucleated 

and the shape of the plot is smooth; on the other hand, the plot in Figure 12, which is 

from a run in which Form II nucleation dominated, has a considerably different shape. It 

seems highly likely that the irregularities in the latter instance are due to existence of 

multiple shapes in the system. Also note how the chord-length densities evolve in the two 

cases. In the first, the progression is rational as the original population simply matures 

(grows) during the run. In the second, however, more seems to be happening; it is likely 
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that the observation is reflective of at least two phenomena: one, the growth of crystals 

and, two, a transformation from a population dominated by needle-like crystals to one 

having the characteristics of octahedral crystals show in Figure 49.  
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Figure 49. Evolution of the chord length density for crystallization of paracetamol from ethanol at a 
cooling rate of  –0.10 °C/min.(t0 = nucleation, t1 = nucleation + 100 min, t2 = steady state). Note that 

the CLD has not been normalized. 
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Figure 50. Evolution of the chord-length density for crystallization of paracetamol from a solution in 

ethanol and 5 % methanol at a cooling rate of – 1.0 °C/min. (t0 = nucleation, t1 = t0 +10 min, t2 = 
steady state). Note that the CLD here has not been normalized. 
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7.4 Conclusion 

The qualitative and quantitative characteristics of chord-length density functions 

have been evaluated for octahedral, slab-like, and needle-like crystals. These 

characteristics differ measurably among the shapes investigated for a single crystal and 

for a population of such crystals. Such variations have been used to characterize 

hypothetical unknown distributions, thereby ascertaining crystal shape. In cases where 

different polymorphs result in different shapes, these outcomes can be used to determine 

the occurrence of a polymorphic transition; i.e., the evolution from one crystalline 

population to another can be followed through the evolution of the shape of the overall 

chord-length density function, making the polymorphic transition observable through 

FBRM measurements. 

Batch cooling crystallization of paracetamol from ethanol and methanol-ethanol 

solutions was used as a model system for exploring the utility of FBRM data in detection 

of the formation and transformations of polymorphs. Our experiments found that both 

Forms I and II were nucleated upon batch cooling of a paracetamol-ethanol solution. 

However, Form II disappeared shortly after nucleation as it underwent a solution-

mediated transformation and left an end-product that was uniformly Form I. By varying 

the crystallization conditions, it was possible to induce nearly exclusive nucleation of 

Form II. Tracking the chord-length distribution of the resulting crystal population made it 

possible to monitor the transition from Form II to Form I. As the two forms have 

significantly different crystal habits, the generated chord-length densities, which are a 

function of the shape, are dissimilar and allowed the detection of the transition from one 
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form to the other. The transition was confirmed by following its progress through image 

analysis of samples removed from the generated crystal population.  

In short, we have shown that tracking the chord-length density of a crystal 

population makes it possible to monitor polymorphic transitions when they are 

accompanied by a change in crystal habit. The FBRM provides in-situ and real-time 

information on the system evolution and can efficiently track qualitative changes in 

particle population. Nonetheless, a model taking into account the possibility of 

coexistence of several shapes is essential to link the chord length density to the 

population density and to fully model the polymorphic transformation.  
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CHAPTER 8 

CONCLUSION AND RECOMMENDATIONS 

 

8.1 Conclusions 

 

The purpose of this research was to develop a new methodology that would 

provide real-time information on the evolution of the crystallization process based on on-

line FBRM measurements. This work showed how information on kinetics, solubility, 

supersaturation, population density and polymorphism could be extracted from FBRM 

measurements.  

First, a mathematical model was developed to quantify the relationship between 

chord length and population densities. This study focused on octahedral crystals as the 

model system was chosen to be paracetamol in ethanol solutions, the general 

methodology developed here can be applied to a wide variety of crystals shapes. The 

restoration of the population density from the chord length density required the 

estimation of a conversion matrix which was specific to the geometry of the considered 

crystals. Once this relationship was fully defined, we focused on investigating the degree 

of confidence that could be given to the restoration process and which aspects of the 

population density could accurately be estimated. To complete this work, the sensitivity 

of the method to noise in data, to inherent confounding measurements, or to shape 

variations was also investigated. It was shown that the developed methodology offered an 

accurate and constraint-free restoration of the population density from FBRM 

measurements.  
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It was established that the spectral method used here could be efficiently applied 

to a wide range of non-spherical particle shapes, as well as to multimodal and sharp 

population density functions. Note that, the accuracy of the proposed method is strongly 

limited by the geometry of the considered population, for example, as needles get thinner, 

the restoration of the population density for the lower size ranges becomes more 

challenging. It is interesting to notice that the small size range features are more difficult 

to estimate because all crystal sizes contribute to small chord counts while only larger 

ones generate large chord counts. This study showed that extreme oscillations could 

occur in the smaller size ranges during the restoration process and also that those size 

ranges were more sensitive to noise, thus making it harder to effectively estimate those 

specific populations. A solution to this issue was proposed through the application of a 

limited smoothing of the restored density when needed.   

The estimation of the population density n was also limited by the presence of 

noise in the chord-length density measurements. It was established that increasing the 

data acquisition time frame had the consequence of powerfully reducing the noise level. 

The data presented in this work showed that when dealing with octahedral shaped crystal, 

increasing the data acquisition time frame to 30 s was enough to reach acceptable noise 

level. It was established that, the precision of the restoration was a function of the crystals 

shape; as a consequence, when dealing with other shapes, the chosen data acquisition 

time frame has to be adapted.  The method developed here, provided an alternative way 

to estimate population density from FBRM measurements, but it also provided us with 

tools for the analysis; specifically, the analysis can help tailor the FBRM settings of 

number of bins, size distribution of bins, and integration time, for the particular crystal 
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shape and distribution function appropriate to a particular process.  Furthermore, the 

presented methodology has great potential to be the basis for a control scheme that 

manipulates the population density produced from FBRM raw data. 

The next step was to use this model to investigate the kinetics of the system. It 

was established that the FBRM technology allows on-line monitoring of the chord length 

density which leads to an estimation of the evolution of n1. The population density is 

related to the number population density, hence once n1 is known the estimation of ΔN is 

straight forward. This work showed how being able to estimate the evolution of the 

number population density versus time led to the estimation of the mass crystallized and 

the supersaturation, ΔC. Considering that ΔC is the driving force behind growth and 

nucleation phenomena, both kinetics were related to the supersaturation and quantified 

through a data fit of the model derived from FBRM data. This research led to the 

development of tools allowing the estimation of growth and primary nucleation kinetics 

for the considered system. It also provided an alternative way to monitor the evolution of 

the supersaturation. 

The model system being paracetamol in ethanolic solution, the growth and 

nucleation kinetics of this system were established through a model fit of the data. The 

comparison between literature data, experimental evolution, and modeled prediction of 

the kinetics and the supersaturation led to the conclusion that the method provided an 

accurate estimation of the evolution of the system. This method can be applied to other 

systems providing the knowledge of the shape of the crystals, as well as some general 

information on the solute and solvent such as density for example. 
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The results from the experiments aiming at determining the kinetics of the system 

showed how a seeded crystallization was implemented and how nucleation and growth 

kinetics of the system were extracted from chord length measurements.  

The growth and primary nucleation kinetics were then used to fully define the 

population balance model. This set of coupled differential equation involving the 

concentration, C, and the population density, n, was solved using two different 

methodologies: finite difference method and moment transformation method. The 

resolution of the population balance model led to the computation of the evolution of the 

population density versus time, n(L,t), and the concentration, C(t). This set the basis for 

the development of a predictive model. The predicted evolution of both n and C was 

compared to the actual one. It was shown that both resolution methods led to similar 

results and that the model provided an accurate trend, nonetheless, some imprecision in 

the numbers was noticed. This difference was attributed to the hypothesis made. The 

error source is especially due to the fact that we assumed a temperature independent 

growth kinetic constant, due to the use of the formula given by Mersmann (1990) to 

estimate the interfacial tension in the nucleation kinetic term and also, we neglected 

agglomeration, breakage and secondary nucleation. Such a model can presently be used 

to estimate the evolution of n but could be expected to lead to a better control of the 

process through higher accuracy of the estimation of the process parameter. 

As polymorphism is a large aspect in the crystallization of organic compounds, 

some attention was given as to how the FBRM can be used to track such a transition. The 

characteristics of chord-length density functions were estimated for octahedral, slab-like, 

and needle-like crystals. It was shown that these characteristics differed significantly 
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among the various shapes investigated, and those differences could be used to 

characterize unknown distributions. When polymorphic transition is accompanied by a 

change in crystals shape, it was established how the distribution characteristics could be 

used to follow polymorphic transition. In other words, by monitoring the evolution of the 

overall chord-length density function, it was proven possible to monitor the evolution 

from one crystalline population to another, hence making the polymorphic transition 

readily observable through FBRM measurements. 

Batch cooling crystallization of paracetamol from ethanol and methanol-ethanol 

solutions was used as a model system.  It was found that both Forms I and II of 

paracetamol crystals were, under given experimental conditions, nucleated upon batch 

cooling of a paracetamol-ethanol solution. However, the metastable Form II was found to 

disappear shortly after nucleation leading, through a solution-mediated transformation, to 

an end-product that was uniformly the stable Form I. It was also found that by varying 

slightly the experimental conditions such as solvent composition, we could induce nearly 

exclusive nucleation of Form II. It was then shown how the transition from Form II to 

Form I could be tracked through the monitoring of the chord-length distribution. The 

transition was visually confirmed through image analysis of the crystals formed, a 

transition from needle like crystals (Form II) to octahedral crystals (Form I) was 

observed.  

The FBRM provided in-situ and real-time information on the system evolution 

such as, population density, kinetics and supersaturation and can also efficiently track 

shape changes in the crystalline population. The FBRM measured chord length densities 

can be related to phenomenon such as growth and nucleation, through the appropriate 
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models. The proposed methodology can be used as a basis for the development of 

efficient control tool applicable to the crystallization process. 

 
 

8.2 Recommendations 

 
 
The development of a predictive model is important as it can be a strong tool in 

the control of the crystallization process. The research presented here shows the 

possibility of developing such a tool by showing how the necessary components, such as 

growth kinetics for example, can be obtained from FBRM data. Nonetheless it would be 

interesting to complete this study by investigating phenomenon such as agglomeration or 

breakage into the population balance model. Even though considered negligible in this 

study, those assumptions cannot always be made and in the aim to generalize the model 

including those phenomena in the population balance model would lead to more accurate 

and universal control scheme.  

The methodology can also benefit from investigating the temperature dependence 

of the growth rate and by validating the results obtained by the models through 

experimental techniques such as the direct measurement of the concentration. This would 

also provide interesting data on the sensitivity of the proposed methodology. 

Another aspect of this work referred to polymorphism. It has been shown that the 

FBRM can be a useful tool when detecting polymorphic transitions. It is interesting to 

note that, there is limited literature regarding the modeling and monitoring of this 

transition, hence developing a model taking into account the possibility of coexistence of 

several shapes in the slurry would be an interesting follow up to this research. It would 
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then enable the user to fully model the polymorphic transformation and it would also 

make possible the application of the proposed methodologies to multi-component and 

multi-shaped systems.  

Finally, the determination of the general applicability of this research would call 

for further validation. This would be realized through a similar study of other systems 

which present different crystal shapes. Those complementary studies could lead to a 

successful application of the proposed tools for control and monitoring purposes to a 

wide range of systems.  
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APPENDIX A 

SENSITIVITY OF THE MODEL 
- ADDITIONAL GRAPHS - 

 

Gamma Distribution - Slab like crystals (Aspect ratio 1:1:5): m´ = 54 
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Figure 51. Projection of n1 onto observable and unobservable subspaces and recovered population 
density through the spectral method for a slab shape  
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Gamma Distribution - Needle-like crystals (Aspect ratio 1:1:20): m´ = 37 
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Figure 52. Projection of n1 onto observable and unobservable subspaces and recovered population 

density through the spectral method for a needle shape. 
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Bimodal distribution- Slab like crystals (Aspect ratio 1:1:5):   m´ = 21 
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Figure 53.  Projection of n1 onto observable and unobservable subspaces and recovered population 

density through the spectral method for a slab shape 
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Bimodal distribution - Needle like crystals (Aspect ratio 1:1:20): m´ = 18  
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Figure 54.  Projection of n1 onto observable and unobservable subspaces and recovered population 

density through the spectral method for a slab shape. 
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Bimodal distribution- Noisy distribution - Octahedral crystals: m´ = 58 
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Figure 55. Restoration of the bimodal population density from a noisy chord-length density,  
using m´ = 58. 
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APPENDIX B 

MATLAB PROGRAM –SPECTRAL METHOD 
 
function [U,D,n1] = basisdecomp (n,mprime) 
 
format long; 
 
%call matrices  
load L; 
load Moct;  
 
%compute eigenvalues and vectors 
m = 90;cutoff=mprime; 
TMoct=Moct'; 
for i = 1:m 
     for j = 1:m 
        A(i,j) = TMoct (i,:)*Moct (:,j); 
     end 
end  
  
[U,D]=eig(A); 
for i = 1:m 
    lambda1(i,1)=D(i,i); 
end 
 
%compute actual cld and bth 
for i = 1:90 
    cld(i,1)=Moct (i,:)*n(:,1); 
end 
  
for i = 1:90 
    bth(i,1)=TMoct (i,:)*cld(:,1); 
end 
  
%calcul coef alpha 
for i = 1:m 
    for j = 1:m 
        eigenvector(j,1)=U(j,i); 
    end 
    alpha(i,1)=dot(n,eigenvector); 
    cldcoef(i,1)=dot(cld,eigenvector); 
end 
  
for i = 1:m 
    for j = 1:m 
        teta1(j,i)=alpha(i,1)*U(j,i); 
        coefq(j,i)=cldcoef(i,1)*U(j,i); 
    end 
end 
 
%compute projection cld 
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for i = 1:m 
    a=0; 
    for j = (cutoff+1):90 
        a=a+coefq(i,j); 
    end 
    qobs (i,1)=a; 
    qba=0; 
    for j = 1:cutoff 
       qba=qba+coefq(i,j); 
    end 
    qunobs(i,1)=qba; 
end 
 
%compute n1 
for i = 1:m 
    a=0; 
    for j = (cutoff+1):90 
        a=a+teta1(i,j); 
    end 
    n1obs(i,1)=a; 
end 
 
%compute n1 on the unobservable 
for i = 1:m 
    a=0; 
    for j = 1:cutoff 
        a=a+teta1(i,j); 
    end 
    n1unobs (i,1)=a; 
end 
 
%calcul coef beta 
for i = 1:90 
    beta(i,1)=alpha(i,1)*lambda1(i,1); 
end 
for i = 1:m 
    for j = 1:m 
        teta2(j,i)=beta(i,1)*U(j,i); 
    end 
end 
 
%calcul b=phiq observable vectors 
for i = 1:m 
    a=0; 
    for j = (cutoff+1):90 
        a=a+teta2(i,j); 
    end 
    phiqobs (i,1)=a; 
end 
 
% b=phiq on the unobservable 
for i = 1:m 
    a=0; 
    for j = 1:cutoff 
        a=a+teta2(i,j); 
    end 
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    phiqunobs (i,1)=a; 
end 
cld; 
qobs; 
qunobs; 
lambda1; 
n1obs; 
n1unobs; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%restauration pop density 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%calcul TMoct*q=b 
%calcul b 
for i = 1:m 
        bb(i,1) = TMoct (i,:)*cld(:,1); 
end 
  
%compute alpha, ui*b on last 35 vectors 
for i = 1:m 
    for j = 1:m 
        eigenvector(j)=U(j,i); 
    end 
    beta2(i)=dot(eigenvector,bb); 
    alpha2(i)=beta2(i)/lambda1(i); 
end 
for i = 1:m 
    for j = 1:m 
        teta2(j,i)=alpha2(i)*U(j,i); 
    end 
end 
  
%compute n1 on observables vectors 
for i = 1:m 
    a=0; 
    for j = (cutoff+1):m 
        a=a+teta2(i,j); 
    end 
    nrecov(i,1)=a; 
end 
%compute n1 on unobservable 
for i = 1:m 
    a=0; 
    for j = 1:cutoff 
        a=a+teta2(i,j); 
    end 
    nrecovunobs(i,1)=a; 
end 
 
%normalization nrecov 
aa=nrecov(1)*(1.08-1); 
for i = 2:90 
    tot(i)= nrecov(i,1)*(L(i)-L(i-1)); 
    aa=tot(i)+aa; 
end 
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for i = 1:90 
    nrecov(i,1)=nrecov(i,1)/aa; 
end 
  
% check if nrecov give right q + norm 
for i = 1:90 
    qq(i,1)=Moct (i,:)*nrecov(:,1); 
end 
 
%multiply by TMoct to get b 
for i = 1:m 
        bbq(i,1) = TMoct (i,:)*qq(:,1); 
end 
 
nrecov; 
qq; 
bbq; 
 
%compute error 
error=0; 
totn=0; 
for i = 1:m 
        error = error+(n1(i,1)- nrecov(i,1))^2 
   totn = totn+(n1(i,1))^2 
end  
errortotal = sqrt(error/totn); 
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APPENDIX C 

MATLAB PROGRAM –F.D. METHOD 
 
 
function [n,C]=popfinitediff(B) 
format long 
 
%definition stepsize t sec, L m 
deltaL=.1e-6;Lmax=4000;%up to 750um 
deltat=10/60;%tmax=5000; 
 
%definition vecteurs 
L=zeros(Lmax,1); 
for j=1:Lmax 
    L(j,1)=0+j*deltaL; 
end 
lengtht=2701;%tmax=deltat*lengtht; 
time=zeros(lengtht,1); 
for i=1:lengtht 
    time(i,1)=i*deltat; 
end 
 
%define temperature  
TT=zeros(lengtht,1); 
for i=1:250 
TT(i,1)=70+273-(0.20)*i*deltat; 
end 
for i=251:350 
    TT(i,1)=273+45; 
end 
for i=351:lengtht 
    TT(i,1)=45+273-(0.20)*i*deltat; 
if (Temp>=283) 
    TT(i,1)=Temp; 
else 
    TT(i,1)=283; 
end 
end 
 
%definition initial and boundary conditions 
n=zeros(lengtht,Lmax);C=zeros(lengtht,1); 
for j=1:Lmax 
    n(1,j)=0; 
end 
C(1,1)=0.11/151.16/(.11/1293+.263/789); 
for i=1:lengtht 
CS(i,1)=2.955e-4*exp(2.179e-2*TT(i,1))/151.16/((2.955e-4*exp(2.179e-
2*TT(i,1)))/1293+1/789);  
Gamma1(i)=0.414*1.38e-23*TT(i,1)*(1293/0.15116*6.02e23)^(2/3) 
*log(1293/0.15116/CS(i,1));  
end 
CS; 
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B(1,1)=3.96e18*exp(-16*3.1416*(Gamma1(1))^3*(0.15116/1293)^2)* 
/(3*TT(1,1)^3*(1.38e-23)^3*(log(C(1,1)/CS(1,1)))^2); 
G(1,1)= (3.71/3*0.866*1293)*2.68e3* exp(-4.16e4/(8.314*TT(i,1)))* 
(C(1,1)-CS(1,1))^2; 
n(1,1)=B(1,1)*1e10/G(1,1); deltaC(1,1)=C(1,1)-CS(1,1); 
Actot(1,1)=L(1,1)^2*n(1,1)*deltaL; 
%compute n 
for i=1:lengtht-1 
%surface area Actot = sum L^2*n*DL  
C(i+1,1)=C(i,1)-deltat*(sqrt(3)*3.14^(2/3)*G(i,1)*Actot(i,1); 
B(i+1,1)=3.96e18*exp(-16*3.1416*(Gamma1(i+1))^3*(0.15116/1293)^2)* 
/(3*TT(i+1,1)^3*(1.38e-23)^3*(log(C(i+1,1)/CS(i+1,1)))^2); 
G(i+1,1)=(3.71/3*0.866*1293)*2.68e3*exp(-4.16e4/(8.314*TT(i+1,1))) 
*(C(i+1,1)-CS(i+1,1))^2; 
n(i+1,1)=B(i+1,1)/(G(i+1,1)/deltaL); 
deltaC(i+1,1)=C(i+1,1)-CS(i+1,1); 
 
    for j=2:Lmax 
    n(i+1,j)=n(i,j)-(deltat*G(i,1)*(n(i,j)-n(i,j-1))/deltaL); 
    end 
end 
atot=0; 
for j=1:Lmax 
atot= atot + L(i+1)^2*n(i+1,j)*deltaL; 
end 
Actot(i+1,1)=atot; 
 
save pop n; 
subplot(3,1,1); plot(G) 
subplot(3,1,2); plot(B) 
subplot(3,1,3); plot(C) 
mesh(n); 
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APPENDIX D 

POPULATION BALANCE 
ADDITIONAL SIMULATION 

 

 

So as to complete the information presented in Chapter 7, we here use the 

population balance model to predict the evolution of the run described in Chapter 6. The 

temperature profile is as shown in Figure 56. The step sizes are the same for the finite 

difference method, for time Δt = 10 s and for the length step size ΔL = 0.1 μm. We use jn 

= 8 for the moment transformation. As was shown in Chapter 7, both the finite difference 

(F.D.) and the moments transformation are in agreement but are slightly different then the 

experimental results. The general evolution of the concentration is well predicted. 
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Figure 56. Experimental Concentration vs. simulated one.  
 
 

The evolution of the population density n(L,t) is shown in Figure 37. We clearly 

see the nucleation event followed by the growth of the crystals. n(L,t) is here plotted 

every 20 minutes, it is once again noticed that both methods are in agreement. 
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In Figure 57, we look at three specific times to compare the simulated and 

restored population density. t0 is defined as the nucleation time, three different times were 

here considered: t1 = 20 min, t2 = 100 min and t3 = 200 min. A parallel evolution in 

between model and simulation is observed, nonetheless the population density, even 

though close, do not agree. This is due to the assumptions made while estimating the 

kinetics and solving the population balance equations. 
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As shown in Figure 57, there is growth dispersion experimentally. This is not 

rendered in the model. The assumptions made to solve the population balance do not take 

into account the possibility of size dependent growth rate. The growth rate dispersion 

explains the tail seen in the experimentally obtained population density. The model 

provides a fairly good estimation of the trend of the evolution of the population density 

but with still some imprecision in the numbers. 
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